Gyroscope

Основные функции гироскопа в современных смартфонах

Благодаря использованию гиродатчиков в смартфонах производители позволили воспользоваться рядом новых возможностей. Вне зависимости от того, в каком именно аппарате установлен микрочип, владелец непременно отметит функционал.

Например, раньше для того, чтобы ответить на важный звонок, необходимо было нажимать на кнопку или коснуться экрана. Теперь, всего лишь встряхнув телефон, вы можете начать разговор. Кроме того, гироскоп дает возможность смотреть фотографии, интересные изображения, перевернуть страницу в электронной книге. В аудиоплеерах перед вами появляется возможность выбрать другую песню, не касаясь при этом никаких кнопок.

Гиродатчики невероятно удобны в калькуляторах. При портретном использовании появляется возможность справиться с минимальным количеством функций – умножить, поделить, вычесть или сложить.

Если владелец перевернет телефон на 90 градусов, встроенный в телефоне калькулятор получит ряд дополнительных возможностей. По сути, перед ним появится настоящий инженерный калькулятор. И что самое главное – не нужно каждый раз тратить время на поиск и выбор нужной функции в меню настроек – система самостоятельно определяет, когда необходимо переключиться на инженерную версию, а когда – вернуться обратно на обычную.

Может показаться, что гироскоп отвечает только за выполнение обычных функций. На самом деле, это далеко не так

Разработчики программного обеспечения также обратили внимание на возможности гиродатчиков

Некоторые операционные системы предусматривают возможность повторного поиска устройств, в которых включен Bluetooth. Микрочипы дают пользователю возможность пользоваться специфическими программами, посредством которых определяется уровень и угол наклона объекта. Поэтому если вы увидите строителя, который измеряет угол размещения тех или иных предметов дома с помощью айфона, не стоит удивляться.

Гироскопы очень удобны, если владельцу смартфона необходимо определить местность, в которой находится человек. Вам может показаться, что за такую функцию отвечает только GPS-датчик, но на самом деле, это не так.

Сейчас GPS-навигатор самостоятельно подсчитывает текущие координаты местонахождения, а гироскоп определяет направление, в которую повернут человек в режиме реального времени. К примеру, если вы находитесь на открытой местности, где нет дорог, но вам надо добраться до ближайшего населенного пункта, достаточно повернуться лицом к нему – и на экране вы сможете увидеть, куда сможете прийти, если постоянно шагать прямо. Наоборот, отвернувшись спиной к требуемому населенному пункту, вы заметите и это.

Наличие подобных помощников делает ориентирование на незнакомой местности куда более простым. Таким образом, гиродатчик является незаменимым элементом смартфона, используемого людьми, которым нравятся активные виды отдыха.

Естественно, дело не обходится без минусов. Некоторые владельцы телефонов, где присутствует гироскоп, предпочитают отключать его. Так, например, некоторые приложения могут медленно реагировать на изменения в текущем положении в пространстве. Кроме того, если вы лежа читаете книгу, перевернувшись на бок, гиродатчик сразу же укажет программе на необходимость изменения ориентации страницы. Как результат, вы можете столкнуться с рядом неудобств.

History

Gyroscope invented by Léon Foucault in 1852. Replica built by Dumoulin-Froment for the Exposition universelle in 1867. National Conservatory of Arts and Crafts museum, Paris.

Essentially, a gyroscope is a top combined with a pair of gimbals. Tops were invented in many different civilizations, including classical Greece, Rome, and China. Most of these were not utilized as instruments.

The first known apparatus similar to a gyroscope (the «Whirling Speculum» or «Serson’s Speculum») was invented by John Serson in 1743. It was used as a level, to locate the horizon in foggy or misty conditions.

The first instrument used more like an actual gyroscope was made by Johann Bohnenberger of Germany, who first wrote about it in 1817. At first he called it the «Machine». Bohnenberger’s machine was based on a rotating massive sphere. In 1832, American Walter R. Johnson developed a similar device that was based on a rotating disc. The French mathematician Pierre-Simon Laplace, working at the École Polytechnique in Paris, recommended the machine for use as a teaching aid, and thus it came to the attention of Léon Foucault. In 1852, Foucault used it in an experiment involving the rotation of the Earth. It was Foucault who gave the device its modern name, in an experiment to see (Greek skopeein, to see) the Earth’s rotation (Greek gyros, circle or rotation), which was visible in the 8 to 10 minutes before friction slowed the spinning rotor.

In the 1860s, the advent of electric motors made it possible for a gyroscope to spin indefinitely; this led to the first prototype heading indicators, and a rather more complicated device, the gyrocompass. The first functional gyrocompass was patented in 1904 by German inventor Hermann Anschütz-Kaempfe. American Elmer Sperry followed with his own design later that year, and other nations soon realized the military importance of the invention—in an age in which naval prowess was the most significant measure of military power—and created their own gyroscope industries. The Sperry Gyroscope Company quickly expanded to provide aircraft and naval stabilizers as well, and other gyroscope developers followed suit.

In 1917, the Chandler Company of Indianapolis, created the «Chandler gyroscope», a toy gyroscope with a pull string and pedestal. Chandler continued to produce the toy until the company was purchased by TEDCO inc. in 1982. The chandler toy is still produced by TEDCO today.

In the first several decades of the 20th century, other inventors attempted (unsuccessfully) to use gyroscopes as the basis for early black box navigational systems by creating a stable platform from which accurate acceleration measurements could be performed (in order to bypass the need for star sightings to calculate position). Similar principles were later employed in the development of inertial navigation systems for ballistic missiles.

During World War II, the gyroscope became the prime component for aircraft and anti-aircraft gun sights. After the war, the race to miniaturize gyroscopes for guided missiles and weapons navigation systems resulted in the development and manufacturing of so-called midget gyroscopes that weighed less than 3 ounces (85 g) and had a diameter of approximately 1 inch (2.5 cm). Some of these miniaturized gyroscopes could reach a speed of 24,000 revolutions per minute in less than 10 seconds.

Gyroscopes continue to be an engineering challenge. For example, the axle bearings have to be extremely accurate. A small amount of friction is deliberately introduced to the bearings, since otherwise an accuracy of better than 10−7{\displaystyle 10^{-7}} of an inch (2.5 nm) would be required.

Three-axis MEMS-based gyroscopes are also being used in portable electronic devices such as tablets,smartphones, and smartwatches. This adds to the 3-axis acceleration sensing ability available on previous generations of devices. Together these sensors provide 6 component motion sensing; acceleration for X,Y, and Z movement, and gyroscopes for measuring the extent and rate of rotation in space (roll, pitch and yaw). Some devices (e.g. the iPhone) additionally incorporate a magnetometer to provide absolute angular measurements relative to the Earth’s magnetic field. Newer incorporate up to all nine axes of sensing in a single integrated circuit package, providing inexpensive and widely available motion sensing.

Литература

  • Бороздин В. Н.  Гироскопические приборы и устройства систем управления: Учеб. пособие для втузов. — М.: Машиностроение, 1990. — 272 с. — ISBN 5-217-00359-6.
  • Гироскопические системы / Под ред. Д. С. Пельпора. В 3 ч. — М.: Высшая школа, 1986—1988. Ч. 1: Теория гироскопов и гироскопических стабилизаторов. 1986; Ч. 2: Гироскопические приборы и системы. 1988; Ч. 3: Элементы гироскопических приборов. 1988
  • Матвеев В. В., Распопов В. Я.  Основы построения бесплатформенных инерциальных навигационных систем. 2-е изд / Под ред. В. Я. Распопова. — СПб.: ЦНИИ «Электроприбор», 2009. — 280 с. — ISBN 978-5-900780-73-3.
  • Меркурьев И. В., Подалков В. В.  Динамика микромеханического и волнового твердотельного гироскопов. — М.: Физматлит, 2009. — 226 с. — ISBN 978-5-9221-1125-6.
  • Павловский М. А.  Теория гироскопов: Учебник для вузов. — Киев: Вища школа, 1986. — 303 с.
  • Пельпор Д. С.  Гироскопические системы. Ч. 2. Гироскопические приборы и системы. 2-е изд. — М.: Высшая школа, 1988. — 424 с. — 6000 экз. — ISBN 5-06-001186-0.
  • Савельев И. В.  Курс общей физики. Т. 1. Механика. — М.: Астрель, 2004. — Т. 1. — 336 с. — 5000 экз. — ISBN 5-17-002963-2..
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, стереотипное. — М.: Физматлит, 2006. — Т. I. Механика. — 560 с. — ISBN 5-9221-0715-1.

Для чего используется гироскоп в телефонах

Смартфоны стали частью нашей жизни, статистики насчитали 72 млн владельцев этих устройств в России, за 2017 год салоны связи продали 28,4 млн штук.

Люди пользуются мобильными устройствами не только для связи, выхода в интернет или просмотра фильмов.

Смартфон сейчас сможет определить физическое состояние владельца: подсчитать пульс, измерить давление, скорость дыхания.

С другой стороны это же устройство будет инженерным инструментом, определит местоположение, обозначит уровень, измерит угол отклонения или расстояние до объекта.

Все эти действия стали возможны при установке многочисленных датчиков и настройке программного обеспечения.

Определение

Обычный гироскоп – устройство вращения с постоянным углом размещения, используется давно в мореходстве, авиации и космонавтике.

Сложная трёхмерная конструкция из вращающихся окружностей была впервые в кардановом подвесе, и была продемонстрирована в начале 19 века, а после постоянно совершенствовалась.

https://youtube.com/watch?v=zqp6dfy9G5w

Гироскопы для смартфонов

Средний размер смартфона не больше ладони, а внутри его корпуса размещены датчики. Чем круче мобильник, тем больше в нём разнообразных этих микроструктурных чипов. Возможность разместить эти платы появилась после изобретения MEMS – технологии микроэлектромеханических систем.

MEMS помогает создавать 2 типа чипов:

  1. Актуатор – устройство исполнения. Оно переводит цифровой сигнал в реальное действие, примером могут служить наушники.
  2. Сенсор – устройство измерения, которое переводит физические воздействия в цифровой сигнал. Сначала в смартфонах появился датчик движения, позднее гироскоп. Первый из этих сенсоров измеряет линейное перемещение, второй –угловое или поворот.

Работа простейших гироскопов основана на принципе конденсатора, более сложные основаны на принципе вращения.

Изменение положения подвижной части измеряется и переводится в цифровой сигнал, который потом обрабатывается программой. По этому изменению рассчитывается перемещение подвижного грузика и угловые ускорения.

Конструктивно всё размещается в одном кристалле, который крепится на микро плате с контактами. Размер готового гироскопа в корпусе не больше 5*5*1мм, обычно меньше.

Для чего эти премудрости

Гироскоп в смартфоне отвечает за круг задач, который постоянно расширяется. Изначально с его помощью мобильное устройство определяло перемещение в пространстве в трёх плоскостях, скорость этого перемещения, определяло сторону света.

https://youtube.com/watch?v=1HRrBEqvJ5I

GPS определяет координаты на местности, но не подсказывает направление движения к цели. Гироскоп показывает направление, но не обозначает координаты цели. Только вместе они проложат верный путь, поэтому ориентирование с помощью смартфона становится простым занятием.

Как проверить наличие гироскопа

Не факт, если в вашем смартфоне поворачивается экран, то у него установлен гироскоп. Обычный акселератор может управлять поворотом экрана. Полную проверку установленных сенсоров можно сделать программами Sensor Box Android или Sensor Kinetics iOS.

Дополнительные возможности

Разработчики операционных систем мобильных устройств упрощают их использование благодаря встроенным датчикам. Функции гироскопа разрешают владельцам просто встряхнуть телефоном для ответа на входящий звонок, не касаться для этого поверхности экрана.

Многофункциональные приложения, установленные на смартфон, расширяют возможности устройства. Датчик гироскопа используется в строительных, инженерных и дизайнерских приложениях.

Проблемы

При всех положительных качествах встроенного гироскопа, иногда появляются проблемы. Часто при работающем сенсоре приложения реального времени, в которых определяется точное положение в пространстве, замедляются или просто зависают. В таких случаях гироскоп отключают.

Гироскопы для геймеров

Кто не может обойтись без датчика гироскопа, так это геймеры. Гироскоп определяет наклон смартфона, что используется для управления в играх.

Любой поворот экрана в гоночных симуляторах укажет в какую сторону надо двигаться. В стрелялках сенсор покажет направление цели.

Further reading

  • Felix Klein and Arnold Sommerfeld, «Über die Theorie des Kreisels» (Tr., About the theory of the gyroscope). Leipzig, Berlin, B.G. Teubner, 1898–1914. 4 v. illus. 25 cm.
  • Audin, M. Spinning Tops: A Course on Integrable Systems. New York: Cambridge University Press, 1996.
  • Crabtree, H. «An Elementary Treatment of the Theory of Spinning Tops and Gyroscopic Motion». Longman, Green and C), 1909. Reprinted by Michigan Historical Reprint Series.
  • Proceedings of Anniversary Workshop on Solid-State Gyroscopy, 19–21 May 2008. Yalta, Ukraine. Kyiv-Kharkiv. ATS of Ukraine, ISBN 978-976-0-25248-5 (2009)
  • E. Leimanis (1965). The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. (Springer, New York).
  • Perry J. «Spinning Tops». London Society for Promoting Christian Knowledge, 1870. Reprinted by Project Gutemberg ebook, 2010.
  • Walter Wrigley, Walter M. Hollister, and William G. Denhard (1969). Gyroscopic Theory, Design, and Instrumentation. (MIT Press, Cambridge, MA).

Contemporary uses

Steadicam

A Steadicam rig was employed during the filming of Return of the Jedi, in conjunction with two gyroscopes for extra stabilization, to film the background plates for the speeder bike chase. Steadicam inventor Garrett Brown operated the shot, walking through a redwood forest, running the camera at one frame per second. When projected at 24 frames per second, it gave the impression of flying through the air at perilous speeds.

Heading indicator

The heading indicator or directional gyro has an axis of rotation that is set horizontally, pointing north. Unlike a magnetic compass, it does not seek north. When being used in an airliner, for example, it will slowly drift away from north and will need to be reoriented periodically, using a magnetic compass as a reference.

Gyrocompass

Unlike a directional gyro or heading indicator, a gyrocompass seeks north. It detects the rotation of the Earth about its axis and seeks the true north, rather than the magnetic north. Gyrocompasses usually have built-in damping to prevent overshoot when re-calibrating from sudden movement.

Accelerometer

By determining an object’s acceleration and integrating over time, the velocity of the object can be calculated. Integrating again, position can be determined. The simplest accelerometer is a weight that is free to move horizontally, which is attached to a spring and a device to measure the tension in the spring. This can be improved by introducing a counteracting force to push the weight back and to measure the force needed to prevent the weight from moving. A more complicated design consists of a gyroscope with a weight on one of the axes. The device will react to the force generated by the weight when it is accelerated, by integrating that force to produce a velocity.

Что это такое

Гироскопом является специальный чип (в смартфоне), который анализирует положение объекта в пространстве и определяет углы его размещения. Самым простым примером стандартного гироскопа является юла – игра, разработанная специально для детей. Впервые гироскоп был представлен общественности немецким астрономом и математиком И. Боненбергером.

В некоторых научных трудах также присутствует информация о том, что на самом деле устройство изобрели на три года раньше. Гиродатчики активно применяются в большом количестве сфер наук и техники, включая авиацию, судоходство, космонавтику. Их устанавливают в бытовой технике, и, естественно, современных смартфонах.

Зачем нужен гироскоп

В смартфоне гироскоп очень распространен и используется повсеместно. Впервые он появился ещё в 2007 году в модели первого iPhone от компании Apple. А теперь же он есть практически в каждом даже самом бюджетном смартфоне. Он используется в приложениях, играх и даже самой системой. Вот пару примеров того, как ваш смартфон эксплуатирует этот сенсор:

  1. В некоторых приложениях можно активировать какую-то функцию простым поворотом смартфона либо тряской. Например, в инженерном калькуляторе есть повернуть гаджет на 90 градусов, то откроется дополнительное меню.
  2. Есть программы, которые позволяют блокировать и разблокировать смартфон, когда вы кладете его на какую-то поверхность. То есть, датчик фиксирует, что вы положили устройство, и оно не двигается – в этом случае происходит блокировка. Как только гироскоп определит, что смартфон был взят в руки и поднят – экран разблокируется.
  3. В системе есть живые обои, которые красиво двигаются в зависимости от того, как повернуть экран. Это тоже дело данного датчика – именно он узнает, куда вы повернули смартфон, и дает команду живым обоям.
  4. Для просмотра видео в 360 градусов можно использовать гироскоп, достаточно повернуть экран в нужную сторону и вам покажут фрагмент видео в той стороне.
  5. Гироскоп помогает системе навигации.
  6. В играх, особенно в гонках, можно управлять поворотами влево или вправо. Именно благодаря гироскопу можно в гонках использовать смартфон как руль автомобиля.

Пользуясь гироскопическими приборами, определяют Линейные скорости и ускорения движения самолета. Наконец, они облегчают физический труд летчика, управляя полетом самолета автоматически.

2.4 Перспективы развития гироскопического приборостроения

Сегодня созданы достаточно точные гироскопические системы, удовлетворяющие большой круг потребителей. Сокращение средств, выделяемых для военно-промышленного комплекса в бюджетах ведущих мировых стран, резко повысило интерес к гражданским применениям гироскопической техники. Например, сегодня широко распространено использование микромеханических гироскопов в системах стабилизации автомобилей или видеокамер.

По мнению сторонников таких методов навигации, как GPS и ГЛОНАСС, выдающийся прогресс в области высокоточной спутниковой навигации сделал ненужными автономные средства навигации (в пределах зоны покрытия спутниковой навигационной системы (СНС), то есть в пределах планеты). В настоящее время СНС системы по параметрам массы, габаритов и стоимости превосходят гироскопические.

Сейчас разрабатывается система навигационных спутников третьего поколения. Она позволит определять координаты объектов на поверхности Земли с точностью до единиц сантиметров в дифференциальном режиме, при нахождении в зоне покрытия корректирующего сигнала DGPS. При этом якобы отпадает необходимость в использовании курсовых гироскопов. Например, установка на крыльях самолета двух приемников спутниковых сигналов, позволяет получить информацию о повороте самолета вокруг вертикальной оси. Однако системы GPS оказываются неспособны точно определять положение в городских условиях, при плохой видимости спутников. Подобные проблемы обнаруживаются и в лесистой местности. Кроме того прохождение сигналов СНС зависит от процессов в атмосфере, препятствий и переотражений сигналов. Автономные же гироскопические приборы работают в любом месте — под землёй, под водой, в космосе. В самолётах GPS оказывается точнее акселерометров на длинных участках. Но использование двух GPS-приёмников для измерения углов наклона самолета даёт погрешности до нескольких градусов. Подсчёт курса путём определения скорости самолёта с помощью GPS также не является достаточно точным. Поэтому, в сегодняшних навигационных системах оптимальным решением является комбинация спутниковых и гироскопических систем, называемая интегрированной(комплексированной) ИНС/СНС системой. За последние десятилетия, эволюционное развитие гироскопической техники подступило к порогу качественных изменений

Именно поэтому внимание специалистов в области гироскопии сейчас сосредоточилось на поиске нестандартных применений таких приборов. Открылись совершенно новые интересные задачи: разведка полезных ископаемых, предсказание землетрясений, сверхточное измерение положений железнодорожных путей и нефтепроводов, медицинская техника и многие другие

Чем гироскоп отличается от акселерометра

Казалось бы, гироскоп и акселерометр – слова синонимы, но нет. Акселерометр – это младший брат гироскопа, который может только определять повороты относительно оси смартфона. В то же время гироскоп может и это, и намного большее, а именно: узнавать перемещение в пространстве, определять стороны света и скорость движения. Благодаря гироскопу можно перемещаться в пространстве, в то время как акселерометр определяет только повороты гаджета на одной точке и не может определить стороны света.

Но зачем тогда нужен акселерометр, если есть гироскоп? Дело в том, что эти датчики могут использоваться вместе и при таких обстоятельствах работа смартфона оптимизируется в несколько раз. Устройства, оборудованные двумя датчиками, могут намного точнее считывать информацию касательно положения и делать это быстрее. Но это не значит, что по отдельности эти два сенсора работают плохо. Например, для любителей гонок хватит только акселерометра. А для тех, кто используется смартфон как навигатор – пригодится только гироскоп. Но вместе они смогут дать более точную информацию.

В целом, гироскоп – важный элемент для телефона, который уже плотно вошел в нашу жизнь. Сейчас уже сложно представить полноценное пользование смартфонами без этого чудесного инструмента.

Кому наличие гиродатчика обязательно

Самое популярное направление для гироскопа — это, конечно же, мобильные игры. Намного приятнее играть в игру, когда вам не нужно водить по экрану для перемещения, а достаточно наклонить устройство. Так и пальцы не мешаются на экране и управление комфортнее. Для гонок это дает ощущение присутствия на трассе, игрок сразу чувствует дорогу и более плавно передвигается за счёт легких поворотов смартфона.

В некоторых играх при помощи гироскопа делается эффект трясущейся камеры – будто картинка находится за смартфоном, а он лишь окно в тот мир.

Обязательным наличие рассматриваемого датчика будет для людей с профессиональными обязанностями. Благодаря сенсору можно узнать, насколько ровно легла та или иная поверхность – будет крайне полезно слесарям, станочникам и прочим профессиям. Также этот прибор поможет измерить длину и расстояние, даст информацию о скорости и темпе перемещения.

Со смартфоном, оснащенным гироскопом, больше не нужен компас, ведь этот датчик и есть компас. Он может в считанные секунды корректно указать стороны света.

В YouTube имеются видео с поддержкой технологии 360°. Можно при помощи смартфона рассматривать все стороны видео, не используя при этом свайпы и вовсе не прикасаясь к экрану. Если у вас есть этот датчик, просто оцените эту красоту в этом видео:

https://youtube.com/watch?v=S5XXsRuMPIU

Также часто используется гироскоп у любителей спорта. Они благодаря этому чудесному датчику узнают, сколько уже пробежали километров без необходимости подключаться к сети. Ещё на него можно присвоить несколько задач в некоторых специализированных приложениях.

Description and diagram

Diagram of a gyro wheel. Reaction arrows about the output axis (blue) correspond to forces applied about the input axis (green), and vice versa.

A gyroscope is a wheel mounted in two or three gimbals, which are pivoted supports that allow the rotation of the wheel about a single axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow a wheel mounted on the innermost gimbal to have an orientation remaining independent of the orientation, in space, of its support. In the case of a gyroscope with two gimbals, the outer gimbal, which is the gyroscope frame, is mounted so as to pivot about an axis in its own plane determined by the support. This outer gimbal possesses one degree of rotational freedom and its axis possesses none. The inner gimbal is mounted in the gyroscope frame (outer gimbal) so as to pivot about an axis in its own plane that is always perpendicular to the pivotal axis of the gyroscope frame (outer gimbal). This inner gimbal has two degrees of rotational freedom.

The axle of the spinning wheel defines the spin axis. The rotor is constrained to spin about an axis, which is always perpendicular to the axis of the inner gimbal. So the rotor possesses three degrees of rotational freedom and its axis possesses two.
The wheel responds to a force applied to the input axis by a reaction force to the output axis.

The behaviour of a gyroscope can be most easily appreciated by consideration of the front wheel of a bicycle. If the wheel is leaned away from the vertical so that the top of the wheel moves to the left, the forward rim of the wheel also turns to the left. In other words, rotation on one axis of the turning wheel produces rotation of the third axis.

A gyroscope flywheel will roll or resist about the output axis depending upon whether the output gimbals are of a free or fixed configuration. Examples of some free-output-gimbal devices would be the attitude reference gyroscopes used to sense or measure the pitch, roll and yaw attitude angles in a spacecraft or aircraft.

Animation of a gyro wheel in action

The centre of gravity of the rotor can be in a fixed position. The rotor simultaneously spins about one axis and is capable of oscillating about the two other axes, and it is free to turn in any direction about the fixed point (except for its inherent resistance caused by rotor spin). Some gyroscopes have mechanical equivalents substituted for one or more of the elements. For example, the spinning rotor may be suspended in a fluid, instead of being mounted in gimbals. A control moment gyroscope (CMG) is an example of a fixed-output-gimbal device that is used on spacecraft to hold or maintain a desired attitude angle or pointing direction using the gyroscopic resistance force.

In some special cases, the outer gimbal (or its equivalent) may be omitted so that the rotor has only two degrees of freedom. In other cases, the centre of gravity of the rotor may be offset from the axis of oscillation, and thus the centre of gravity of the rotor and the centre of suspension of the rotor may not coincide.

Выводы

Гироскоп – это сложное устройство, без которого не обходится ни один современный смартфон. Его изобретение и внедрение в мобильные аппараты позволило значительно расширить функциональные возможности. Телефон, где есть собственный гиродатчик, можно использовать не только для совершения звонков, но и определения углов объектов, текущего направления объекта в пространстве и так далее. Даже для принятия входящего вызова достаточно легко встряхнуть свой телефон и начать диалог, не нажимая никаких кнопок, не касаясь экрана.

Производители постоянно совершенствуют конструкцию гироскопов. Поэтому современные модели не требуют так много энергии, как раньше. Даже если вы не пользуетесь гироскопом в одном из приложений, не выключайте его, но при условии, что он не мешает.

В противном случае (например, при чтении электронной книги лежа на диване) его все-таки придется деактивировать. Без гироскопа мы не могли бы полноценно ориентироваться в условиях пребывания на незнакомой территории. Гиродатчик по праву можно считать одним из самых важных элементов современных телефонов и планшетов, увеличивающим количество полезных функций.

https://youtube.com/watch?v=oA3inTl5gKE

Богдан Вязовский

«Мы живем в обществе, где технологии являются очень важной частью бизнеса, нашей повседневной жизни. И все технологии начинаются с искр в чьей-то голове

Идея чего-то, чего раньше не существовало, но однажды будет изобретено, может изменить все. И эта деятельность, как правило, не очень хорошо поддерживается»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector