АТОМНОГО ЯДРА СТРОЕНИЕ

Искусственные превращения ядер.

Опыты с естественно радиоактивными элементами показали, что на скорость радиоактивного распада нельзя повлиять обычными физическими средствами: теплом, давлением и т.п. Таким образом, поначалу казалось, что нет какого-либо эффективного метода исследования структуры естественно стабильных изотопов. Однако в 1919 Резерфорд обнаружил, что ядра можно расщеплять, бомбардируя их альфа-частицами. Первым расщепленным элементом был азот, который в виде газа заполнял камеру Вильсона. Альфа-частицы, испускаемые ториевым источником, сталкивались с ядрами азота, поглощались ими, в результате чего испускались быстрые протоны. При этом происходила реакция

В результате такой реакции атом азота превращается в атом кислорода. В этом примере энергии связи ядер аналогичны теплу, которое выделяется при химической реакции, хотя и значительно превышают его. Впоследствии аналогичные результаты были получены и с многими другими элементами. Используя различные методы, можно измерить энергии и углы вылета испускаемых заряженных частиц, что обеспечивает проведение количественных экспериментов.

Следующим шагом явилось открытие, сделанное Дж.Кокрофтом и Э.Уолтоном в 1932. Они установили, что искусственно ускоренные пучки протонов с энергией 120 кэВ (т.е. значительно меньшей, чем у альфа-частиц в опытах Резерфорда) способны вызывать расщепление атомов лития в процессе

Два ядра гелия (альфа-частицы) одновременно вылетают в противоположные стороны. Причина, по которой эта реакция протекает при низкой энергии, заключается в прочной связи альфа-частиц; при добавлении протона к массе ядра 7Li сообщается энергия, которая почти равнозначна массам двух альфа-частиц. Остальная энергия, необходимая для протекания реакции, черпается из кинетической энергии бомбардирующих протонов.

Все известные элементы и встречающиеся в природе изотопы могут быть «искусственным» путем превращены в соседние элементы. Все эти новые изотопы оказываются радиоактивными, однако в результате последующего распада они превращаются в стабильные изотопы. Были получены новые элементы, вплоть до элемента с порядковым номером 103; все они оказались радиоактивными с относительно коротким периодом полураспада. В настоящее время известно свыше 1000 изотопов.

Разрядность процессора

Входная информация представленная данными и командами в процессор попадает через внешние шины. Обработка данных происходит в соответствие с командами в арифметико-логическом устройстве, а результат выводится при помощи устройств вывода. Чем больше разрядность всех схем процессора, тем большее количество информации возможно ему обработать за единицу времени. Делая вывод можно понять, что от разрядности центрального процессора на прямую зависит производительности компьютерной системы в целом.

Хорошим примером станет один из первых микропроцессоров для IBM PC 80286, которые были 16 разрядными. Следующая же модель процессора стала уже 32 разрядной, а 64 разрядные процессоры для ПК появились в 2014 году. Данная разрядность и по сей день остаётся основной разрядностью и используется в производстве в современных процессорах.

Послесловие

Сегодня мы максимально подробно выяснили, какой процессор выбрать и как правильно это сделать, т.е

на что можно обращать внимание при его покупке

Информация довольно специфичная и технически, возможно, для некоторых непростая и непривычная, поэтому если чего-то не усвоили, то перечитайте еще раз, а потом еще, после чего откройте прайс и попробуйте сделать несколько вариантов выбора процессоров под разные нужды.

Потом снова перечитайте, потом снова выберите. В общем и так по кругу, пока не набьете руку 🙂

Мы же свою благую миссию выполнили, значит, пришла пора прощаться на некоторое время. Как и всегда, если есть какие-то вопросы, дополнения, благодарности и всё такое прочее, то смело пишите комментарии.

P.S. За существование данной статьи спасибо члену команды 25 КАДР

Подписка:

Роль процессора в играх

Как известно, CPU передает команды с внешних устройств в систему, занимается выполнением операций и передачей данных. Скорость исполнения операций зависит от количества ядер и других характеристик процессора. Все его функции активно используются, когда вы включаете любую игру. Давайте подробнее рассмотрим несколько простых примеров:

Обработка команд пользователя

Практически во всех играх как-то задействуются внешние подключенные периферийные устройства, будь то клавиатура или мышь. Ими осуществляется управление транспортом, персонажем или некоторыми объектами. Процессор принимает команды от игрока и передает их в саму программу, где практически без задержки выполняется запрограммированное действие.

Данная задача является одной из самых крупных и сложных. Поэтому часто случается задержка отклика при движении, если игре не хватает мощностей процессора. На количестве кадров это никак не отражается, однако управление совершать практически невозможно.

Генерация случайных объектов

Многие предметы в играх не всегда появляются на одном и том же месте. Возьмем за пример обычный мусор в игре GTA 5. Движок игры за счет процессора решает сгенерировать объект в определенное время в указанном месте.

То есть, предметы вовсе не являются случайными, а они создаются по определенным алгоритмам благодаря вычислительным мощностям процессора. Кроме этого стоит учитывать наличие большого количества разнообразных случайных объектов, движок передает указания процессору, что именно требуется сгенерировать. Из этого выходит, что более разнообразный мир с большим количеством непостоянных объектов требует от CPU высокие мощности для генерации необходимого.

Поведение NPC

Давайте рассмотрим данный параметр на примере игр с открытым миром, так получится более наглядно. NPC называют всех персонажей, неуправляемых игроком, они запрограммированы на определенные действия при появлении определенных раздражителей. Например, если вы откроете в GTA 5 огонь из оружия, то толпа просто разбежится в разные стороны, они не будут выполнять индивидуальные действия, ведь для этого требуется большое количество ресурсов процессора.

Кроме этого в играх с открытым миром никогда не происходят случайные события, которые не видел бы главный персонаж. Например, на спортивной площадке никто не будет играть в футбол, если вы этого не видите, а стоите за углом. Все вращается только вокруг главного персонажа. Движок не будет делать того, что мы не видим в силу своего расположения в игре.

Объекты и окружающая среда

Процессору нужно рассчитать расстояние до объектов, их начало и конец, сгенерировать все данные и передать видеокарте для отображения. Отдельной задачей является расчет соприкасающихся предметов, это требует дополнительных ресурсов. Далее видеокарта принимается за работу с построенным окружением и дорабатывает мелкие детали. Из-за слабых мощностей CPU в играх иногда не происходит полная загрузка объектов, пропадает дорога, здания остаются коробками. В отдельных случаях игра просто на время останавливается для генерации окружающей среды.

Дальше все зависит только от движка. В некоторых играх деформацию автомобилей, симуляцию ветра, шерсти и травы выполняют видеокарты. Это значительно снижает нагрузку на процессор. Порой случается, что эти действия необходимо выполнять процессору, из-за чего происходят просадки кадров и фризы. Если частицы: искры, вспышки, блески воды выполняются CPU, то, скорее всего, они имеют определенный алгоритм. Осколки от выбитого окна всегда падают одинаково и так далее.

Методика тестирования

Основная трудность таком тесте – огромное количество измерений, которые требуется произвести, чтобы сложилась полная картина. Пришлось пойти на определенные компромиссы. В первую очередь, мы отказались тестировать процессоры AMD (по крайней мере в этот раз), а из продукции Intel сосредоточились на линейке Haswell Refresh для разъема LGA1150 и процессорах Haswell-E (LGA2011-v3).

В общей сложности эти две категории включают 41 модель CPU, обладающих восемью различными конфигурациями ядра (будь то полноценные схемы или обрезанные варианты более мощных CPU):

  • Celeron G18XX;
  • Pentium G3XX;
  • Core i3-41XX;
  • Core i3-43XX;
  • Core i5-44XX/45XX/46XX;
  • Core i7-47XX;
  • Core i7-58XX;
  • Core i7-59XX.

Из каждой группы мы взяли либо старшую модель, частота которой варьировалась, либо одну из младших (которую при необходимости разгоняли). В таблице эти CPU выделены жирным шрифтом.

Четыре младших чипа Haswell не имеют технологии Turbo Boost и под нагрузкой работают при постоянной частоте, что позволяет одним процессором в точности моделировать производительность всех остальных в своей группе. Чипы Core i5 и i7, оснащенные Turbo Boost, нельзя на 100 % заменить старшими моделями, так как множитель базовой частоты, в отличие от максимальной, не регулируется. Выход – тестировать топовый чип на верхней Turbo-частоте соответствующих моделей. Благо на практике Turbo Boost управляет частотой весьма агрессивно.

Разъем CPU Модель Число ядер Число потоков Объем кеш-памяти L3, Мбайт Базовая частота, ГГц Макс. частота Turbo, ГГц Оперативная память
LGA2011-v3 Core i7-5960X 8 16 20 3,0 3,5 4 × DDR4 SDRAM, 2133 МГц
Core i7-5830K 6 12 15 3,5 3,7
Core i7-5820K 3,3 3,6
LGA1150 Core i7-4790K 4 8 8 4,0 4,4 2 × DDR3 SDRAM, 1600 МГц
Core i7-4790 3,6 4,0
Core i7-4790S 3,2 4,0
Core i7-4790T 2,7 3,9
Core i7-4785T 2,2 3,2
Core i5-4690K 4 4 6 3,5 3,9
Core i5-4690 3,5 3,9
Core i5-4690S 3,2 3,9
Core i5-4590 3,3 3,7
Core i5-4590S 3,0 3,7
Core i5-4690T 2,5 3,5
Core i5-4460 3,2 3,4
Core i5-4460S 2,9 3,4
Core i5-4590T 2,0 3,0
Core i5-4460T 1,9 2,7
Core i3-4370 2 4 4 3,8
Core i3-4360 3,7
Core i3-4350 3,6
Core i3-4360T 3,2
Core i3-4350T 3,1
Core i3-4340TE 2,6
Core i3-4160 2 4 3 3,6
Core i3-4150 3,5
Core i3-4160T 3,1
Core i3-4150T 3,0
Pentium G3460 2 2 3 3,5 2 × DDR3 SDRAM, 1600 МГц
Pentium G3450 3,4
Pentium G3440 3,3
Pentium G3258 3,2 2 × DDR3 SDRAM, 1333 МГц
Pentium G3250 3,2
Pentium G3240 3,1
Pentium G3450T 2,9 2 × DDR3 SDRAM, 1600 МГц
Pentium G3440T 2,8
Pentium G3250T 2,8 2 x DDR3 SDRAM, 1333 МГц
Pentium G3240T 2,7
Celeron G1850 2 2 2 2,9 2 × DDR3 SDRAM, 1333 МГц
Celeron G1840 2,8
Celeron G1840T 2,5

Сетка частот у Intel довольно неравномерная. Наибольшее количество моделей в отведенном частотном диапазоне и наименьший шаг тактовой частоты наблюдается в группах Pentium G3XX и Core i5-44XX/45XX/46XX. Рассматривались три варианта частотной последовательности для тестов:

  1. в точности следовать сетке Intel;
  2. варьировать частоту с постоянным шагом 200 МГц;
  3. следовать сетке Intel, избегая позиций, совпадающих по верхней Turbo-частоте или отстоящих на 100 МГц.

Мы остановились на третьем варианте как на наименее трудоемком, но в то же время отражающем частотный диапазон каждого ядра Haswell и опирающемся на модельный ряд Intel. В таблице ниже указаны частоты, доступные каждому ядру по спецификациям Intel. На выделенных частотах проводились тесты.

Celeron G1850
Тактовая частота, ГГц 2,5 2,8 2,9
Pentium G3258
Тактовая частота, ГГц 2,7 2,8 2,9 3,1 3,2 3,3 3,4 3,5
Core i3-4360
Тактовая частота, ГГц 2,6 3,1 3,2 3,6 3,7 3,8
Core i5-4690K
Тактовая частота, ГГц 2,7 3,0 3,4 3,5 3,7 3,9
Core i7-4790K
Тактовая частота, ГГц 3,2 3,9 4 4,4
Core i7-5820K
Тактовая частота, ГГц 3,6 3,7
Core i7-5960X
Тактовая частота, ГГц 3,5

Но определенную часть многообразия CPU Intel мы все же упустили. Нам не были доступны чипы серии Core i3-41XX (впрочем, от i3-43XX отличающиеся лишь объемом кеша L3), а Pentium G3258, формально «разлоченный», по неизвестным причинам отказался разгоняться множителем на тестовой платформе ASUS SABERTOOTH Z97 MARK 1, поэтому частоты свыше 3,2 ГГц остались для этого чипа недоступными.

РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ

Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезают в результате поглощения. Кроме того, возможна утечка нейтронов вследствие диффузии через вещество, аналогичной диффузии одного газа сквозь другой.

Чтобы управлять ядерным реактором, нужно иметь возможность регулировать коэффициент размножения нейтронов k, определяемый как отношение числа нейтронов в одном поколении к числу нейтронов в предыдущем поколении. При k = 1 (критический реактор) имеет место стационарная цепная реакция с постоянной интенсивностью. При k > 1 (надкритический реактор) интенсивность процесса нарастает, а при k r = 1 – (1/k) называется реактивностью.)

Благодаря явлению запаздывающих нейтронов время «рождения» нейтронов увеличивается от 0,001 с до 0,1 с. Это характерное время реакции позволяет управлять ею с помощью механических исполнительных органов – управляющих стержней из материала, поглощающего нейтроны (B, Cd, Hf, In, Eu, Gd и др.). Постоянная времени регулирования должна быть порядка 0,1 с или больше. Для обеспечения безопасности выбирают такой режим работы реактора, в котором для поддержания стационарной цепной реакции необходимы запаздывающие нейтроны в каждом поколении.

Для обеспечения заданного уровня мощности используются управляющие стержни и отражатели нейтронов, но задачу управления можно значительно упростить правильным расчетом реактора. Например, если реактор спроектировать так, чтобы при увеличении мощности или температуры реактивность уменьшалась, то он будет более устойчивым. Например, при недостаточном замедлении из-за повышения температуры расширяется вода в реакторе, т.е. уменьшается плотность замедлителя. В результате усиливается поглощение нейтронов в уране-238, поскольку они не успевают эффективно замедлиться. В некоторых реакторах используется фактор увеличения утечки нейтронов из реактора вследствие уменьшения плотности воды. Еще один способ стабилизации реактора основан на нагревании «резонансного поглотителя нейтронов», такого, как уран-238, который тогда сильнее поглощает нейтроны.

Ядерные силы и мезоны.

Малый радиус действия ядерных сил впервые отчетливо обнаружился уже в опытах по рассеянию Резерфорда. Альфа-частицы, приближавшиеся к центру ядра до 10–14 м, испытывали действие сил, знак и величина которых отличались от обычного электростатического отталкивания. Более поздние эксперименты с применением нейтронов показали, что между всеми нуклонами существуют большие короткодействующие силы. Эти силы отличны от хорошо известных электростатических и гравитационных сил, не исчезающих даже на очень больших расстояниях. Ядерные силы являются силами притяжения, что прямо следует из факта существования устойчивых ядер, вопреки электростатическому отталкиванию находящихся в них протонов. Ядерные силы между любой парой нуклонов (нейтронов и протонов) – одни и те же; это показывает сравнение энергетических уровней «зеркальных ядер», отличающихся друг от друга тем, что в них протоны заменены нейтронами и наоборот. В пределах своего радиуса действия ядерные силы достигают очень большой величины. Электростатическая потенциальная энергия двух протонов, находящихся на расстоянии 1,5Ч10–15 м друг от друга, составляет всего лишь 1 МэВ, что в 40 раз меньше ядерной потенциальной энергии. Ядерные силы также обнаруживают насыщение, поскольку данный нуклон в состоянии взаимодействовать лишь с ограниченным числом других нуклонов. Отсюда быстрый первоначальный рост (с увеличением А) средней энергии связи, приходящейся на один нуклон (рис. 3), и относительное постоянство этой энергии в дальнейшем. (Если бы каждый нуклон взаимодействовал со всеми нуклонами в ядре, то энергия связи, приходящаяся на один нуклон, все время росла бы пропорционально А.)

Пока что нет удовлетворительной теории ядерных сил, и проблема интенсивно изучается экспериментально и теоретически. Однако многие идеи, лежащие в основе «мезонной теории ядерных сил», опубликованной в 1935 Х.Юкавой, оказались в согласии с экспериментальными фактами. Юкава выдвинул гипотезу, что притяжение, удерживающее нуклоны внутри ядра, возникает благодаря наличию «квантов» некоего поля, аналогичных фотонам (световым квантам) электромагнитного поля и обеспечивающих взаимодействие электрических зарядов. Из квантовой теории поля следует, что радиус действия силы обратно пропорционален массе соответствующего кванта; в случае электромагнитного поля масса квантов – фотонов – равна нулю, и радиус действия сил бесконечен. Масса квантов ядерного поля (названных «мезонами»), вычисленная по экспериментально измеренному радиусу действия ядерных сил, оказалась примерно в 200 раз больше массы электрона.

Положение теории Юкавы упрочилось после того, как К.Андерсон и С.Неддермейер открыли в 1936 новую частицу с массой примерно 200 электронных масс (ныне именуемую мюоном), которую они обнаружили с помощью камеры Вильсона в космических лучах. (В 1932 Андерсон открыл «позитрон», положительный электрон.) Вначале казалось, что кванты ядерных сил найдены, однако проведенные затем эксперименты обнаружили обескураживающее обстоятельство: «ключ к ядерным силам» не взаимодействует с ядрами! Эта запутанная ситуация прояснилась лишь после того, как в 1947 С.Пауэлл обнаружил частицу с подходящей массой, которая взаимодействует с ядрами. Эта частица (названная пи-мезоном, или пионом) оказалась нестабильной и самопроизвольно распадалась, превращаясь в мюон. Пи-мезон подходил на роль частицы Юкавы, и его свойства были во всех деталях изучены физиками, использовавшими для этих целей космические лучи и современные ускорители.

Хотя существование пи-мезонов и ободрило сторонников теории Юкавы, на ее основе оказалось весьма трудно правильно предсказать такие детальные свойства ядерных сил, как их насыщение, энергии связи и энергии ядерных уровней. Трудности математического характера не позволили точно установить, что именно предсказывает эта теория. Ситуация еще более усложнилась после открытия новых типов мезонов, которые, как считается, имеют отношение к ядерным силам. См. также МОМЕНТЫ АТОМОВ И ЯДЕР; УСКОРИТЕЛЬ ЧАСТИЦ; ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; РАДИОАКТИВНОСТЬ.

Делящиеся изотопы.

Имеются три делящихся изотопа – уран-235, плутоний-239 и уран-233. Уран-235 получают разделением изотопов; плутоний-239 – в реакторах, в которых уран-238 превращается в плутоний, 238U 239U 239Np 239Pu; уран-233 – в реакторах, в которых торий-232 перерабатывается в уран. Ядерное топливо для энергетического реактора выбирается с учетом его ядерных и химических свойств, а также стоимости.

В приводимой ниже таблице представлены основные параметры делящихся изотопов. Полное сечение характеризует вероятность взаимодействия любого типа между нейтроном и данным ядром. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон

Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции. Число новых нейтронов, приходящихся на один поглощенный нейтрон, важно, поскольку характеризует интенсивность деления

Доля запаздывающих нейтронов, испускаемых после того, как деление произошло, связана с энергией, запасенной в данном материале.

ХАРАКТЕРИСТИКИ ДЕЛЯЩИХСЯ ИЗОТОПОВ

ХАРАКТЕРИСТИКИ ДЕЛЯЩИХСЯ ИЗОТОПОВ

Изотоп

Уран-235

Уран-233

Плутоний-239

Энергия нейтрона

1 МэВ

0,025 эВ

1 МэВ

0,025 эВ

1 МэВ

0,025 эВ

Полное сечение

6,6 ± 0,1

695 ± 10

6,2 ± 0,3

600 ± 10

7,3 ± 0,2

1005 ± 5

Сечение деления

1,25 ± 0,05

581 ± 6

1,85 ± 0,10

526 ± 4

1,8 ± 0,1

751 ± 10

Доля ядер, неучаствующих в делении

0,077 ± 0,002

0,174 ± 0,01

0,057 ± 0,003

0,098 ± 0,004

0,08 ± 0,1

0,37 ± 0,03

Число нейтронов, испускаемых в одном акте деления

2,6 ± 0,1

2,43 ± 0,03

2,65 ± 0,1

2,50 ± 0,03

3,03 ± 0,1

2,84 ± 0,06

Число нейтронов на один поглощенный нейтрон

2,41 ± 0,1

2,07 ± 0,02

2,51 ± 0,1

2,28 ± 0,02

2,8 ±

2,07 ± 0,04

Доля запаздывающих нейтронов, %

(0,64 ± 0,03)

(0,65 ± 0,02)

(0,26 ± 0,02)

(0,26 ± 0,01)

(0,21 ± 0,01)

(0,22 ± 0,01)

Энергия деления, МэВ

200

197

207

Все сечения приведены в барнах (10 -28 м2).

Данные таблицы показывают, что каждый делящийся изотоп имеет свои преимущества. Например, в случае изотопа с наибольшим сечением для тепловых нейтронов (с энергией 0,025 эВ) нужно меньше топлива для достижения критической массы при использовании замедлителя нейтронов. Поскольку наибольшее число нейтронов на один поглощенный нейтрон возникает в плутониевом реакторе на быстрых нейтронах (1 МэВ), в режиме воспроизводства лучше использовать плутоний в быстром реакторе или уран-233 в тепловом реакторе, чем уран-235 в реакторе на тепловых нейтронах. Уран-235 более предпочтителен с точки зрения простоты управления, поскольку у него больше доля запаздывающих нейтронов.

Результаты тестирования процессорозависимые игры

Перед тем как приступить к тестам, надо понять, на примере каких игр действительно возможно показать процессорозависимость. С этой целью мы в первую очередь взяли игры из нашей постоянной обоймы для тестирования GPU и в них сравнили производительность систем с мощным видеоадаптером (GeForce GTX 980) и самым слабым (двухъядерный Celeron) или самым мощным (восьмиядерный Core i7) CPU.

Бенчмарки: игры
Программа Настройки Полноэкранное сглаживание Разрешение
Tomb Raider, встроенный бенчмарк Макс. качество SSAA 4x 1920 × 1080
Bioshock Infinite, встроенный бенчмарк Макс. качество. Postprocessing: Normal FXAA
Crysis 3 + FRAPS Макс. качество. Начало миссии Post Human Нет
Metro: Last Light, встроенный бенчмарк Макс. качество Нет
Company of Heroes 2, встроенный бенчмарк Макс. качество Нет
Battlefield 4 + FRAPS Макс. качество. Начало миссии Tashgar MSAA 4x + FXAA
Thief, встроенный бенчмарк Макс. качество SSAA 4x + FXAA
Alien: Isolation Макс. качество SMAA T2X

Настройки игр были выбраны с таким расчетом, чтобы при установке топового GPU частота смены кадров оказалась в диапазоне 60-80 FPS, а при использовании младшего – не опустилась ниже 30 FPS в разрешении 1920 × 1080. При более высоком фреймрейте (как делают в обзорах процессоров, чтобы снизить нагрузку на GPU и выдвинуть на первый план CPU) дополнительная производительность, которую может дать мощный CPU, идет на ветер, а при более низком CPU уже не играет большой роли (что мы продемонстрируем отдельно). Не все игры позволили уложиться в этот диапазон: в Battlefield 4, Bioshock Infinite и Alien: Isolation фреймрейт превышает 60 FPS даже на Celeron. Вот и первые интересные результаты.

Хорошие новости для владельцев слабых CPU: есть игры, мало зависимые от производительности процессора – такие, как Alien: Isolation, и даже абсолютно независимые — Tomb Raider. В Crysis 3 и Bioshock: Infinite частота смены кадров при установке самого мощного процессора вместо самого слабого повышается на 27 и 34 % соответственно. А поскольку Bioshock: Infinite просто-таки летает на GTX 980 с высочайшим фреймрейтом, то толку от любого CPU быстрее Celeron в нем также нет.

В Battlefield 4, Thief, Company of Heroes 2 и Metro: Last Light разница в производительности между Celeron и Core i7 варьирует от 47 до 107 %. Это наиболее процессорозависимые игры, которые мы использовали в дальнейшем тестировании CPU.

Игра Intel Celeron G1850 (2 ядра, 2,5 ГГц) Intel Core i7-5960X (8 ядер, 3,5 ГГц) Рост производительности, %
Metro: Last Light 42 87 107
Company of Heroes 2 34 61 79
Thief 47 79 68
Battlefield 4 62 91 47
Bioshock Infinite 93 125 34
Crysis 3 45 57 27
Alien: Isolation 118 137 16
Tomb Raider 60 60

Естественная радиоактивность.

С явления естественной радиоактивности началась ядерная физика. Альфа-, бета- и гамма-излучения, испускаемые ураном, имеют ядерное происхождение, тогда как оптические и рентгеновские спектры соответствуют электронной структуре атома. Альфа-частицы оказались ядрами гелия. Бета-частицы по своему заряду и массе идентичны электронам оболочки атома, однако их ядерное происхождение было четко продемонстрировано изменением заряда распадающегося ядра. Кроме того, энергия гамма-излучения значительно превышает энергию, которую могут излучать электроны из внешней оболочки атома, следовательно, это проникающее излучение имеет ядерное происхождение.

Некоторые встречающиеся в природе элементы с большим атомным номером (уран, торий, актиний) имеют радиоактивные изотопы, в результате распада которых образуются другие радиоактивные изотопы (такие, как радий), а в конечном итоге стабильный свинец. Время жизни «родительского» изотопа в каждом случае сравнимо с возрастом Земли, который оценивается в 10 млрд. лет. Предполагается, что в период образования Земли существовало большое число радиоактивных веществ, однако короткоживущие элементы уже давно превратились в стабильные конечные продукты. Возможно, некоторые из изотопов, которые называют «стабильными», в действительности распадаются, однако их периоды распада («времена жизни») столь велики, что существующими методами их не удается измерить.

Важная роль радиоактивности в физике ядра связана с тем, что радиоактивное излучение несет информацию о типах частиц и энергетических уровней ядра. Например, испускание альфа-частиц из ядра и относительная устойчивость образования из двух протонов и двух нейтронов косвенно указывает на возможность существования альфа-частиц внутри ядра.

Различие между естественной и искусственно наведенной радиоактивностью не очень существенно для понимания строения ядра, однако изучение естественных радиоактивных рядов позволило сделать важные выводы относительно возраста Земли и использовать такие элементы в качестве источников бомбардирующих частиц задолго до того, как были изобретены ускорители частиц.

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10-13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов – ядерных протонов (Z – число протонов) и ядерных нейтронов (N – число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.

Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.

Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10-13см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов – «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида АХ).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96Sr, 96Y, 96Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234U, 235U, 236U, 238U.

Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36S, 37Cl, 38Ar, 39K, 40Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде ZХМ, где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3Н, 14С, 137Сs, 90Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 – 15Р32, такое же массовое число имеет и один из изотопов серы – 16S32.

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector