Обзор NVMe-накопителя Intel SSD 760p вот давно бы так

Деградация и восстановление производительности

Проверка работы технологии автономной сборки мусора и того, как накопитель обслуживает команду операционной системы TRIM, – наше традиционное испытание. Однако в случае c WD Green SSD его пришлось проводить по несколько упрощённой схеме. Дело в том, что для заполнения накопителя данными мы обычно используем случайную запись с глубокой очередью запросов. Но лишенный оперативной динамической памяти WD Green SSD обслуживает такие операции крайне медленно, и увидеть на них какое-то дополнительное снижение скорости из-за замусоривания флеш-памяти попросту невозможно.

Поэтому работоспособность TRIM была проверена по-простому, утилитой TRIMCheck, которая смотрит, удаляется ли в реальности из флеш-памяти содержимое стёртых файлов.

Проверка прошла успешно, TRIM в WD Green SSD работает без нареканий.

Что же касается автономной сборки мусора в случае, если команда TRIM не подаётся, то мы проверили её функционирование при помощи теста скорости линейной записи из утилиты AIDA64. Вот так выглядит график скорости на чистом накопителе.

Здесь всё ожидаемо. На начальном этапе запись идёт в SLC-кеш, что позволяет получить производительность на уровне 450 Мбайт/с, затем скорость падает до 140-150 Мбайт/с, что соответствует пропускной способности четырёхканального массива TLC-памяти.

Если после этого сделать получасовую паузу, чтобы дать возможность контроллеру накопителя активировать внутренние алгоритмы обслуживания массива флеш-памяти, а затем выполнить тест линейной записи повторно, то результат получается таким.

Из графика следует, что за время простоя ровным счётом ничего не произошло. Контроллер даже не стал освобождать SLC-кеш. Иными словами, автономная сборка мусора у WD Green SSD не работает

Но в данном случае это и не столь важно. Этот накопитель относится к числу сравнительно медлительных моделей, поэтому запись с одновременным освобождением блоков страниц TLC-памяти у него выполняется с примерно такой же невысокой скоростью, как и простая запись

Что же касается алгоритмов работы SLC-кеша, то более длительное, чем обычно, сохранение в нём данных – это не баг, а фича. Одна из особенностей технологии nCache 2.0 заключается в том, что SLC-кеш используется не только при операциях записи, но и при чтении. Специально в него данные из основного массива TLC-памяти не переносятся, но сохранение в нём последней записанной информации позволяет получать более высокие скорости при повторных обращениях к одним и тем же файлам, что в конечном итоге не только поднимает показатели в тестах, но и может давать положительный эффект при реальной нагрузке.

Деградация и восстановление производительности

Наблюдение за изменением скорости записи в зависимости от объёма записанной на диск информации — весьма важный эксперимент, позволяющий понять работу внутренних алгоритмов накопителя. В данном тесте мы загружаем SSD непрерывным потоком запросов на случайную запись 4-килобайтных блоков с очередью максимальной глубины и попутно следим за той производительностью, которая при этом наблюдается. На приведённом ниже графике в виде точек отмечены результаты измерений моментальной производительности, которые мы снимаем ежесекундно, а чёрная линия показывает среднюю скорость, наблюдаемую в течение 30-секундного интервала.

В характере поведения Samsung 850 EVO при длительной непрерывной нагрузке толком ничего не поменялось. Однако пару нюансов отметить всё-таки нужно. После того как объём непрерывно записанной информации переваливает через ёмкость SSD, средняя производительность у новых версий 850 EVO оказывается немножко ниже, чем была у SSD на базе 32-слойной TLC 3D V-NAND. Кроме того, несколько хуже, чем у предшественников, дело обстоит и со стабильностью скоростных параметров. Впрочем, все эти наблюдения имеют лишь теоретическую ценность, ведь многочасовые непрерывные операции записи – нагрузка, которая имеет место лишь в серверах, но никак не в настольных системах.

Что же действительно интересно, так это то, как в новых Samsung 850 EVO проявляется работа технологии SLC-кеширования TurboWrite. Её функционирование заметно на начальной части приведённых графиков, но давайте увеличим их и подробнее взглянем на то, что происходит с производительностью при наполнении псевдо-SLC-кеша.

Для наглядности результаты Samsung 850 EVO второй версии мы совместили с результатами предшественника, а на графике с 500-гигабайтными накопителями начало оси ординат сместили от нулевой отметки.

На графиках видно две принципиально различных ситуации. У 250-гигабайтных накопителей SLC-кеш объёмом 3 Гбайт позволяет на начальном этапе увеличивать скорости случайной записи. Его производительность у 850 EVO разных версий совершенно одинакова, но вот быстродействие основной части TLC 3D V-NAND немного различается. Несмотря на то, что массив памяти во второй версии Samsung 850 EVO имеет меньшую степень параллелизма и состоит всего из восьми устройств, его скорость оказывается немного выше. И это хорошо объясняет, почему на операциях записи обновлённый 850 EVO выигрывает у старого сородича: инженерам Samsung действительно удалось заметно увеличить производительность своей новой 48-слойной TLC 3D V-NAND.

В накопителях ёмкостью 500 Гбайт параллелизм массива флеш-памяти выше, поэтому SLC-кеширование практически не влияет на скорость случайной записи. Однако приведённый график вновь позволяет убедиться в том, что за пределами 6-гигабайтного кеша новая версия 850 EVO чуть быстрее старой.

Давайте посмотрим теперь, как у Samsung 850 EVO второй версии работает сборка мусора. Для исследования этого вопроса после завершения предыдущего теста, приводящего к деградации скорости записи, мы выжидаем 15 минут, в течение которых SSD может попытаться самостоятельно восстановиться за счёт сборки мусора, но без помощи со стороны операционной системы и команды TRIM, и замеряем быстродействие. Затем на накопитель принудительно подаётся команда TRIM — и скорость измеряется ещё раз, что позволяет убедиться в способности SSD с помощью TRIM полностью восстанавливать свою паспортную производительность.

И вновь мы видим, что никаких принципиальных изменений в поведении Samsung 850 EVO после того, как он был переведён на третье поколение трёхмерной флеш-памяти, не произошло. Накопители семейства возвращают себе первоначальную производительность после подачи на них команды TRIM, но собирать мусор во флеш-памяти полностью автономно, без какой-либо помощи со стороны операционной системы, они не умеют. Однако это совсем не страшно даже в том случае, когда они оказываются в средах без поддержки TRIM: спасает положение фирменная технология TurboWrite. SLC-кеш у Samsung 850 EVO освобождается вне зависимости от чего-либо во время любого бездействия, поэтому запись объёма информации, не превышающего размер SLC-кеша, будет происходить с высокой скоростью в совершенно любой ситуации.

Результаты в CrystalDiskMark

CrystalDiskMark — это популярное и простое тестовое приложение, работающее «поверх» файловой системы, которое позволяет получать результаты, легко повторяемые обычными пользователями. И то, что выдаёт этот бенчмарк, с качественной точки зрения обычно почти не отличается от показателей, которые были получены нами в тяжёлом и многофункциональном пакете IOMeter.

 

Тут Plextor M7V преподносит сюрприз. По результатам тестирования в IOMeter мы заключили, что это – достаточно медленный при однородных случайных операциях SSD. Но в CrystalDiskMark картина получается иной. Никаких намёков на низкую скорость случайного чтения тут нет, напротив, производительность при чтении 4-килобайтных блоков переваливает за 40 Мбайт/с, что свойственно скорее производительным моделям SATA-накопителей.

Однако у таких результатов есть простое объяснение. Имеющаяся в Plextor M7V технология PlexNitro, добавляющая в схему работы накопителя SLC-кеш, ускоряет не только операции записи, но и в некоторых случаях чтение. Проявляется это в том, что данные, которые остались в SLC-кеше после последних записей и не успели перенестись в основной массив TLC-памяти, читаются значительно быстрее, так как в этих операциях не принимает участия затратное LDPC-декодирование. В реальных сценариях работы такое свойство практически бесполезно, но зато оно проявляет себя в простых бенчмарках вроде CrystalDiskMark. Приложения такого рода занимаются измерениями скорости сразу же после создания тестового файла, поэтому в данном случае этот файл целиком попадает в SLC-кеш, и на выходе мы получаем нереалистичные показатели быстродействия, ускоренные технологией PlexNitro.

К сожалению, в реальной жизни скорость чтения из кеша, который работает по простейшей схеме WriteBack и не имеет никаких механизмов упреждающей выборки данных, практически не важна. В нашем тестировании IOMeter мы целенаправленно боремся с такими уловками производителей и получаем показатели, имеющие прямое отношение к реальной жизни. В CrystalDiskMark же показатели производительности получаются неестественно завышенными, и можно даже сказать, что Plextor M7V оптимизирован для подобных любительских тестовых утилит. Именно поэтому в Сети можно встретить обзоры, в которых Plextor M7V приписывается высокая производительность: всё зависит от того, насколько качественные инструменты используются в тот или иной методике испытаний.

Производительность в PCMark 8 Storage Benchmark 2.0

Тестовый пакет Futuremark PCMark 8 2.0 интересен тем, что он имеет не синтетическую природу, а напротив — основывается на том, как работают реальные приложения. В процессе его прохождения воспроизводятся настоящие сценарии-трассы задействования диска в распространённых десктопных задачах и замеряется скорость их выполнения. Текущая версия этого теста моделирует нагрузку, которая взята из реальных игровых приложений Battlefield 3 и World of Warcraft и программных пакетов компаний Adobe и Microsoft: After Effects, Illustrator, InDesign, Photoshop, Excel, PowerPoint и Word. Итоговый результат исчисляется в виде усреднённой скорости, которую показывают накопители при прохождении тестовых трасс

Обратите внимание – мы перешли на обновлённую версию дискового бенчмарка, появившуюся в начале 2016 года

Показатели производительности PCMark 2.0 прекрасно подтверждают всё сказанное выше. В реальных сценариях использования Plextor M7V – далеко не быстрое решение, которое способно составить конкуренцию лишь накопителям уровня OCZ Trion 150 небольшой ёмкости, но никак не производительным моделям на базе TLC NAND и уж тем более не накопителям на базе MLC-памяти. При этом вина в том, что Plextor M7V оказался низкопроизводительным SSD, несмотря на использование контроллера авторства Marvell, целиком лежит на разработчиках Plextor, не сумевших выполнить оптимизацию своей прошивки. Говорить об этом с уверенностью позволяет тот факт, что имеющиеся в нашей лаборатории другие накопители на той же аппаратной платформе (подробное знакомство с ними произойдёт несколько позднее) выдают заметно более высокую, чем Plextor M7V, скорость в реальных сценариях.

Интегральный результат PCMark 8 нужно дополнить и показателями производительности, выдаваемыми флеш-дисками при прохождении отдельных тестовых трасс, которые моделируют различные варианты реальной нагрузки. Дело в том, что при разной нагрузке флеш-приводы зачастую ведут себя немного по-разному.

Деградация и восстановление производительности

Наблюдение за изменением скорости записи в зависимости от объёма записанной на диск информации — весьма важный эксперимент, позволяющий понять работу внутренних алгоритмов накопителя. В данном тесте мы загружаем SSD непрерывным потоком запросов на случайную запись 4-килобайтных блоков с очередью максимальной глубины и попутно следим за той производительностью, которая при этом наблюдается. На приведённом ниже графике в виде точек отмечены результаты измерений моментальной производительности, которые мы снимаем ежесекундно, а чёрная линия показывает среднюю скорость, наблюдаемую в течение 30-секундного интервала.

Тестируя новые TLC-накопители на базе бюджетных платформ Silicon Motion и Phison, мы, честно говоря, даже немного подзабыли, как должна выглядеть производительность качественных потребительских SSD при непрерывных и длительных нагрузках. Но Samsung 750 EVO 250 Гбайт оживил стёршуюся из памяти картину – его поведение оказалось близким к эталону. С высокой скоростью — порядка 60 тысяч IOPS — можно заполнить полный объём этого SSD, причём в процессе такого заполнения он демонстрирует отменное постоянство производительности. Первые же несколько гигабайт данных пишутся с увеличенным быстродействием – это результат работы технологии TurboWrite.

После записи примерно 240 Гбайт данных пул свободных страниц заканчивается и накопитель переходит в «использованное» состояние, в котором перед каждой операцией записи контроллер должен освобождать блоки страниц флеш-памяти. Это снижает производительность до 10-20 тысяч IOPS, но стабильность при этом остается весьма впечатляющей. Всё это значит, что Samsung 750 EVO можно смело ставить в RAID-массивы или использовать его там, где важна реакция дисковой подсистемы с предсказуемой латентностью.

Впрочем, то, что изображено на графике выше, – несколько искусственная ситуация. В реальных персональных компьютерах таких длительных нагрузок не бывает. А вот с чем пользователи наверняка будут сталкиваться – так это с работой TurboWrite. Поэтому давайте увеличим начальную область предыдущего графика и подробнее взглянем на то, что происходит с производительностью при заполнении SLC-кеша. Для пущей наглядности в одну систему координат с Samsung 750 EVO 250 Гбайт помещены и показатели Samsung 850 EVO 250 Гбайт.

Сама по себе технология TurboWrite в Samsung 750 EVO точно такая же, как и в Samsung 850 EVO. Размер SLC-буфера в обоих случаях идентичный и составляет порядка 3 Гбайт для 250-гигабайтной версии накопителя. Более того, в обоих случаях он работает с совершенно одинаковой скоростью. Различия же между 750 EVO и 850 EVO заметны лишь при записи больших объёмов информации, не помещающихся в SLC-кеш. Массив памяти, построенный из устройств TLC V-NAND, быстрее, чем массив из обычной планарной TLC NAND, и именно это обуславливает разницу в производительности Samsung 750 EVO и Samsung 850 EVO. Очевидно, что в сценариях работы, в которых записи больших объёмов данных не происходят, эти накопители будут выдавать примерно одинаковое быстродействие.

Давайте посмотрим теперь, как у Samsung 750 EVO работает сборка мусора. Для исследования этого вопроса после завершения предыдущего теста, приводящего к деградации скорости записи, мы выжидаем 15 минут, в течение которых SSD может попытаться самостоятельно восстановиться за счёт сборки мусора, но без помощи со стороны операционной системы и команды TRIM, и замеряем быстродействие. Затем на накопитель принудительно подаётся команда TRIM — и скорость измеряется ещё раз, что позволяет убедиться в способности SSD с помощью TRIM полностью восстанавливать свою паспортную производительность.

TRIM в Samsung 750 EVO работает, как и должен, – производительность возвращается к первоначальным показателям, гарантируя, что при обычной эксплуатации SSD в операционной системе с поддержкой TRIM никаких проявлений деградации скорости записи происходить не будет. Что же касается сборки мусора в условиях без TRIM, то она фактически не работает. Но положение спасает технология TurboWrite. SLC-кеш освобождается контроллером при первой же возможности без каких бы то ни было команд извне, и именно благодаря данному свойству Samsung 750 EVO может хорошо вписаться и в «бестримовую» среду. А это значит, что этот недорогой накопитель вполне можно использовать в RAID-массивах даже с контроллерами, которые команду TRIM от операционной системы не ретранслируют.

Деградация и восстановление производительности

Наблюдение за изменением скорости записи в зависимости от объёма записанной на диск информации — весьма важный эксперимент, позволяющий понять работу внутренних алгоритмов накопителя. В данном тесте мы загружаем SSD непрерывным потоком запросов на случайную запись 4-килобайтных блоков с очередью максимальной глубины и попутно следим за той производительностью, которая при этом наблюдается. На приведённом ниже графике в виде точек отмечены результаты измерений моментальной производительности, которые мы снимаем ежесекундно, а чёрная линия показывает среднюю скорость, наблюдаемую в течение 30-секундного интервала.

Измерение моментальной скорости случайной записи при длительной нагрузке позволяет вновь убедиться в том, что, хотя WD Blue 3D NAND и SanDisk Ultra 3D построены на сравнительно производительной флеш-памяти, их контроллер не обладает достаточной вычислительной мощностью. В результате основанные на нём решения демонстрируют невысокий уровень быстродействия при случайной записи даже в том случае, когда она происходит в пределах SLC-кеша. Затем же уровень производительности снижается ещё сильнее и колеблется вокруг среднего значения в 25 тысяч IOPS. Амплитуда этих колебаний сравнительно высока, и это является ещё одним признаком слабости выбранного для WD Blue 3D NAND и SanDisk Ultra 3D контроллера. В конечном итоге за двухчасовой тест нам удалось записать на рассматриваемые SSD лишь чуть более 600 Гбайт данных, что можно расценивать как невысокий результат. Например, при тестировании Crucial MX500 за тот же срок накопитель оказывался способен принять почти вдвое больший объём информации.

Посмотрим теперь, как происходит восстановление скоростных характеристик до первоначальных величин за счёт работы технологии сборки мусора. Для исследования этого вопроса после завершения предыдущего теста, приводящего к снижению скорости записи, мы выжидаем 15 минут, в течение которых SSD может попытаться самостоятельно восстановиться за счёт сборки мусора, но без помощи со стороны операционной системы и команды TRIM, и замеряем быстродействие. Затем на накопитель принудительно подаётся команда TRIM — и скорость измеряется ещё раз, что позволяет убедиться в способности SSD с помощью TRIM полностью восстанавливать свою паспортную производительность.

С реализацией алгоритмов сборки мусора в новых накопителях Western Digital по сравнению с WD Blue первой версии произошли изменения. Но не в лучшую сторону.

С обслуживанием TRIM всё осталось по-старому. То есть после подачи команды TRIM освобождённые файловой системой блоки страниц флеш-памяти успешно очищаются контроллером и производительность операций записи возвращается к первоначальным значениям. Но что касается процедуры сборки мусора в отрыве от команды TRIM, то она в WD Blue 3D NAND и SanDisk Ultra 3D полностью отсутствует. Иными словами, в средах без поддержки TRIM новые накопители Western Digital не осуществляют подготовку массива флеш-памяти под будущие операции. Впрочем, изъян этот не слишком серьёзный, поскольку сейчас TRIM поддерживается повсеместно. Однако о его существовании всё же необходимо знать.

Накопители SSD с памятью QLC

С конца прошлого года в продаже появились твердотельные накопители с памятью QLC (quad-level cell, т.е. 4 бита в одной ячейке памяти), и, вероятно, в 2019 году таких дисков будет всё больше, а их стоимость обещает быть привлекательной.

Конечные продукты характеризуются следующими плюсами и минусами по сравнению с MLC/TLC:

  • Меньшая стоимость за гигабайт
  • Большая подверженность памяти износу и, теоретически, большая вероятность ошибок при записи данных
  • Меньшая скорость записи данных

Говорить о конкретных цифрах пока сложно, но, некоторые примеры из уже доступных в продаже можно изучить: например, если взять примерно аналогичные накопители M.2 SSD объемом 512 Гб от Intel на базе памяти QLC 3D NAND и TLC 3D NAND, изучить заявленные производителем характеристики, увидим:

  • 6-7 тыс. рублей против 10-11 тыс. рублей. А за стоимость 512 Гб TLC вы можете приобрести 1024 Гб QLC.
  • Заявленный объем записываемых данных (TBW) — 100 Тб против 288 Тб.
  • Скорость записи/чтения — 1000/1500 против 1625/3230 Мб/c.

С одной стороны, минусы могут перевесить плюсы от стоимости. С другой, можно учесть такие моменты: для SATA дисков (если у вас доступен лишь такой интерфейс) разницы в скорости вы не заметите и по сравнению с HDD прирост скорости будет очень значительным, а параметр TBW для QLC SSD на 1024 Гб (который в моем примере стоит столько же как TLC SSD на 512 Гб) уже 200 Тб (более объемные твердотельные накопители «живут» дольше, что связано с тем, как ведется запись на них).

Реальные сценарии нагрузки

Мы обновили набор используемых нами реальных сценариев, и теперь помимо скорости работы SSD при копировании и архивации файлов мы будем проверять также и скорость запуска с твердотельного накопителя игр и приложений. Новые тесты позволят нам делать выводы о том, насколько хорошо та или иная модель может справиться с ролью системного или даже единственного диска в составе ПК, на котором устанавливаются рабочие программы.

При копировании больших объёмов информации Samsung 750 EVO оказывается лучше всех прочих TLC-накопителей, но до уровня, задаваемого MLC SSD, он не дотягивает. Это вполне закономерно: массив трёхбитовой памяти, даже управляемый мощным контроллером, – не самая производительная начинка, особенно если записываемая информация не умещается в SLC-кеш.

При архивации картина оказывается немного иной. Принципиальное отличие тут в том, что TLC-накопитель SanDisk Ultra II смог немного опередить Samsung 750 EVO. Однако все прочие TLC SSD на базе платформ Silicon Motion и Phison до уровня, задаваемого 750 EVO, всё равно не дотягивают.

Отдельный тест разархивации мы проводим по причине особого профиля нагрузки на дисковую подсистему, который очень похож по своему характеру на инсталляцию программного обеспечения. Но результат тут вполне типичен — Samsung 750 EVO располагается между распространёнными MLC- и TLC-накопителями.

Зато при нагрузке, главным образом состоящей из операций чтения данных, Samsung 750 EVO выдаёт просто блестящую скорость. При использовании этого накопителя в роли системного диска вполне можно рассчитывать на производительность на уровне флагманов, чего о других SSD на TLC-памяти сказать невозможно. И в этом, пожалуй, заключается одна из самых сильных сторон рассматриваемой модели.

Тестирование выносливости

Результаты тестирования выносливости рассматриваемого накопителя приведены в отдельном специальном материале «Ресурсные испытания SSD».

Выводы

Мы уже привыкли к тому, что появление любого нового накопителя компании Samsung – это событие. Обладая мощным инженерным потенциалом и огромными производственными мощностями, эта фирма выпускает не имеющие аналогов SSD, которые раз за разом становятся одними из самых лучших и самых востребованных предложений на рынке. Но 750 EVO несколько выбивается из общей концепции, ведь по сути в этом накопителе нет ничего нового. В нём старый контроллер MGX, взятый из 850 EVO, совмещён с 16-нм планарной TLC NAND, которую тоже новой или передовой никак не назовёшь.

Но тем не менее при этом Samsung снова выступила в своём традиционном амплуа: она сделала то, что никто другой из производителей SSD до сих пор сделать не сумел. А именно, спроектировала такой SATA-накопитель, который смог объединить производительность MLC-моделей с ценой TLC-продуктов. И благодаря этому Samsung 750 EVO вполне способен отправить расплодившиеся в последнее время TLC-накопители прочих производителей (и в особенности основанные на контроллерах Phison S10 и SMI SM2256) в глубокий нокаут.

Впрочем, этой своей способностью новинка пользуется далеко не в полной мере. Очевидно, что Samsung сильно опасается, как бы 750 EVO не поломал продажи старших моделей, поэтому максимальная ёмкость в линейке 750 EVO ограничена величиной 250 Гбайт. И это оставляет достаточно большое пространство, в котором конкурирующие TLC SSD пока ещё могут чувствовать себя в относительной безопасности.

Естественно, возвращение на рынок накопителя Samsung на базе планарной TLC-памяти подстегнёт новый всплеск разговоров про сомнительную надёжность таких решений, ведь неприятная история, в которую попал 840 EVO, ещё не стёрлась из памяти. Однако насчёт надёжности 750 EVO можно не опасаться. Во-первых, его гарантированный производителем ресурс лучше, чем у многих других накопителей на трёхбитовой памяти. А во-вторых, Samsung перешла на качественно более сильный алгоритм коррекции ошибок LDPC, который повышает стабильность взаимодействия контроллера с TLC NAND. Иными словами, в данный момент переживать уместнее за TLC-накопители на базе контроллера Phison S10 – в них, например, до сих пор используется коррекция ошибок на основе BCC ECC.

В итоге если вы подыскиваете себе быстрый и недорогой (ключевое слово здесь – недорогой) SSD небольшого объёма под операционную систему и программы, то варианта лучше Samsung 750 EVO не найти. И особенно привлекательным это предложение южнокорейского гиганта выглядит на фоне того, что рекомендованные цены для российского региона установлены в 3 890 и 5 690 рублей за версии объёмом 120 и 250 Гбайт соответственно.

Список участников тестирования

По своему позиционированию GOODRAM Iridium Pro – отнюдь не бюджетное SATA-решение, что обусловлено использованием в основе этого накопителя памяти с двухбитовыми ячейками. Поэтому в качестве соперников для него мы подобрали распространённые SSD ведущих производителей, которые уже доказали свою доброкачественность и могут похвастать положительной репутацией у потребителей. В их число попали как MLC-, так и TLC-модели, базирующиеся на памяти с планарной и трёхмерной организацией. Все тестовые накопители были подобраны близкой ёмкости – 480-525 Гбайт.

В итоге получился следующий перечень соперников:

  • Crucial MX300 525 Гбайт (CT525MX300SSD1, прошивка M0CR050);
  • GOODRAM Iridium Pro 480 Гбайт (SSDPR-IRIDPRO-480, прошивка SAFM01.7)
  • Kingston HyperX Savage 480 Гбайт (SHSS37A/480G, прошивка SAFM00.r);
  • Plextor M6S Plus 512 Гбайт (PX-512M6S+, прошивка 1.00);
  • Transcend SSD230 512 Гбайт (TS512GSSD230S, прошивка P1025F8);
  • Transcend SSD370 512 Гбайт (TS512GSSD370S, прошивка O0918B);
  • Samsung 850 EVO 500 Гбайт (MZ-75E500, прошивка EMT02B6Q);
  • Samsung 850 PRO 512 Гбайт (MZ-7KE512, прошивка EXM04B6Q);
  • Western Digital Blue SSD 500 Гбайт (WDS500G1B0A, прошивка X41000WD).

Напомним, что из представленного списка накопителями на базе планарной MLC NAND помимо главного героя обзора являются Kingston HyperX Savage, Plextor M6S Plus и Transcend SSD370; Samsung 850 PRO основывается на трёхмерной MLC-памяти; Crucial MX300, Samsung 850 EVO и Transcend SSD230 используют многослойную TLC-память; а WD Blue – это SSD, основанный на планарной TLC NAND.

Последовательные операции чтения и записи

При последовательном чтении Samsung 960 EVO обеспечивает вполне достойную производительность и лишь немного проигрывает флагманским накопителям на базе MLC 3D V-NAND. Но при записи ситуация выглядит совсем иначе. Скорость TLC 3D V-NAND третьего поколения, собранной в восьмиканальный массив, оказывается не так уж и высока. И если в случае с SATA SSD это не было заметно из-за ограниченной пропускной способности интерфейса, то у Samsung 960 EVO недостаточная производительность записи сразу бросается в глаза.

Впрочем, в определённой степени это может быть замаскировано технологией Intellegent TurboWrite, которая кеширует операции записи в быстрой SLC-области. Если объём непрерывно записываемой информации не слишком велик, а на накопителе есть достаточно свободного места для того, чтобы технология кеширования могла расширить буфер до максимально возможного размера, то скорости Samsung 960 EVO при последовательной записи могут быть очень достойными. Так, при записи в SLC-буфер версии данного накопителя ёмкостью 500 Гбайт и 1 Тбайт способны развивать производительность порядка 1900-2000 Мбайт/с, а 960 EVO 250 Гбайт может выдать скорость до 1500 Мбайт/с. Чтобы проиллюстрировать это более наглядно, приведём график изменения моментальной производительности записи на разных версиях Samsung 960 EVO.

Здесь хорошо видны и скорости записи в SLC-режиме, и максимальный объём SLC-буфера, который даже в 250-гигабайтной версии 960 EVO достигает 13 Гбайт, чего должно быть достаточно при обычной пользовательской нагрузке в большинстве случаев. Однако тут же можно увидеть и скорость прямой записи в восьмиканальный массив TLC 3D V-NAND, которая, откровенно говоря, оптимизма не внушает. У Samsung 960 EVO 250 Гбайт она составляет порядка 300 Мбайт/с, у полутерабайтной версии – около 600 Мбайт/с, и только лишь в старшем накопителе 960 EVO 1 Тбайт она достигает приемлемого для современного NVMe SSD-накопителя значения в 1100 Мбайт/с. Тем не менее технология Intellegent TurboWrite вполне способна сделать так, чтобы столь низкие показатели производительности никоим образом не проявлялись.

Если же обратить внимание на то, как масштабируется быстродействие последовательных операций при росте глубины очереди запросов, то картина получается следующей (для наглядности на графиках здесь и далее приводятся показатели одной лишь 500-гигабайтной версии Samsung 960 EVO, остальные варианты этого SSD ведут себя схожим образом)

При последовательной записи скорость Samsung 960 EVO с ростом глубины очереди запросов не масштабируется – всё упирается в возможности памяти с трёхбитовой ячейкой. Зато при чтении картина получается совсем иной. Чтобы рассматриваемый накопитель смог полностью раскрыть весь свой потенциал, ему требуется относительно глубокая очередь запросов. В противном случае быстродействие снижается примерно в полтора раза.

Производительность в CrystalDiskMark

Intel SSD 760p 512GB

 

Samsung 960 EVO 500GB

Хотя мы и не считаем показатели CrystalDiskMark релевантными ввиду того, что этот тест использует тестовый файл небольшого размера, уделить им внимание всё-таки нужно из-за его популярности. И как следует из полученных результатов, Intel SSD 760p на фоне прямого конкурента, Samsung 960 EVO, выглядит более чем достойно

Фактически дерзкой интеловской новинке удаётся превзойти «эталонный» 960 EVO при любых вариантах однопоточной мелкоблочной нагрузки. И это значит, что в большинстве реалистичных сценариев работы с дисковой подсистемой Intel SSD 760p сможет предложить лучшую отзывчивость.

Отдельно стоит обратить внимание на скорость случайного чтения 4-килобайтными блоками в отсутствие очереди запросов. Показатель в 63 Мбайт/с – это на данный момент рекорд для SSD, построенных на обычной NAND-памяти

Столь высокое быстродействие в данной дисциплине CrystalDiskMark не способен обеспечить даже Samsung 960 PRO.

Особенности реализации TRIM

Выполнение команды TRIM современным накопителям даётся не столь просто, как можно было бы подумать. Когда операционная система передаёт накопителю информацию о том, что какие-то сектора выводятся файловой системой из обращения, контроллер SSD должен консолидировать эти сектора и очистить освобождающиеся страницы флеш-памяти для выполнения будущих операций. Такая перегруппировка требует перезаписи и очистки областей памяти, и это не только занимает заметное время, но и серьёзно нагружает контроллер работой. В результате после удаления с диска больших объёмов данных владельцы SSD могут столкнуться с эффектом временного замедления или даже с «фризами» накопителя. На практике это может вызвать серьёзный дискомфорт, ведь никто не ожидает, что SSD, основным достоинством которого является моментальная реакция на внешние воздействия, будет замирать на несколько секунд.

Поэтому мы добавили в методику дополнительное исследование, которое позволяет отслеживать, насколько незаметно для пользователя тот или иной SSD обслуживает команды TRIM. Способ проверки очень прост: сразу после удаления крупного файла — объёмом 32 Гбайт — мы проверяем, как накопитель справляется с операциями произвольного чтения данных, контролируя как скорость чтения, так и время ожидания, которое проходит с момента каждого запроса данных до ответа накопителя.

Необходимость очистки блоков флеш-памяти после подачи команды TRIM в накопителях Western Digital на базе BiCS3 NAND не приводит к катастрофическому падению производительности на период выполнения контроллером внутренних операций. Лишь на пару секунд производительность SSD снижается где-то вдвое, плюс до десятков миллисекунд возрастают латентности. В любом случае такое замедление после удаления файлов вряд ли будет сильно заметно в реальной системе. Иными словами, отработка TRIM в WD Blue 3D NAND и SanDisk Ultra 3D реализована достаточно удачно. Впрочем, примерно так же всё работало и раньше – в WD Blue SSD первоначальной версии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector