Калькулятор с решениями примеров и уравнений онлайн и выводом графиков

Содержание:

Матрицы и определители

Пример 1. Сумма матриц

Дано:
Матрицы A и B., Найти:
Сумму матриц A + B = C.C- ?

Решение:
Для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах.
Таким образом, суммой двух матриц A и B является матрица:

Ответ:

Пример 2. Умножение матрицы на число

Дано:
Матрица
Число k=2.

Найти:
Произведение матрицы на число: A × k = BB — ?

Решение:
Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число.
Таким образом, произведение матрицы A на число k есть новая матрица:

Ответ:

Пример 3. Умножение матриц

Дано:
Матрица ;
Матрица .

Найти:
Произведение матриц: A × B = CC — ?

Решение:
Каждый элемент матрицы С = A × B, расположенный в i-й строке и j-м столбце, равен сумме произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B. Строки матрицы А умножаем на столбцы матрицы В и получаем:

Ответ:

Пример 4. Транспонирование матрицы

Дано:
Матрица .

Найти:
Найти матрицу транспонированную данной.AT — ?

Решение:
Транспонирование матрицы А заключается в замене строк этой матрицы ее столбцами с сохранением их номеров. Полученная матрица обозначается через AT

Ответ:

Пример 5. Обратная матрица

Дано:
Матрица .

Найти:
Найти обратную матрицу для матрицы A.A-1 — ?

Решение:
Находим det A и проверяем det A ≠ 0:. det A = 5 ≠ 0.

Составляем вспомогательную матрицу AV из алгебраических дополнений Aij: .

Транспонируем матрицу AV:.

Каждый элемент, полученной матрицы, делим на на det A:

Ответ:

Пример 6. Ранг матрицы

Дано:
Матрица .

Найти:
Ранг матрицы A.r(A) — ?

Решение:
Ранг матрицы A — это число, равное максимальному порядку отличных от нуля миноров Mk этой матрицы. Ранг матрицы A вычисляется методом окаймляющих миноров или методом элементарных преобразований.

Вычислим ранг матрицы, применив .

M32≠0;

.

Ответ: r(A) = 2

Пример 7. Определитель квадратной матрицы

Дано:
Матрица .

Найти:
Определитель |A| матрицы A.|A| — ?

Решение:
Каждой квадратной матрице А можно поставить в соответствие число, которое называется ее определителем и обозначается det А или |А|. Определитель матрицы третьего порядка вычисляется через ее элементы, по следующей формуле:
Тогда, для данной в примере матрицы A, определитель |A| будет равен:

Ответ: |A| = 16.

Пример 8. Минор и алгебраическое дополнение

Дано:
Матрица .

Найти:
Минор и алгебраическое дополнение элемента a21 определителя |A| матрицы A.Δ21 — ? A21 — ?

Решение:
Запишем определитель матрицы A: .

Минор элемента a21 определителя |A|- это определитель, который получится из данного вычеркиванием 2-й строки и 1-го столбца. Для минора используют обозначение Δ21.

Алгебраическое дополнение A21 элемента a21 в определителе — это число, которое вычисляется по правилу: Aij = (-1)i+j · Δij, где Δij — соответствующий минор. Тогда, подставив данные в формулу, получим:A21 = (-1)2+1 · (-6) = 6.

Ответ: Δ21 = -6; A21 = 6.

Данный онлайн калькулятор может

  • Корректно выполнять стандартные математические функции, записанные одной строкой типа — 12*3-(7/2) и может обрабатывать числа больше, чемсчитаем огромные числа в онлайн калькулятореМы даже не знаем, как такое число назвать правильно (тут 34 знака и это совсем не предел).
  • Кроме тангенса, косинуса, синуса и других стандартных функций — калькулятор поддерживает операции по расчёту арктангенса, арккотангенса и прочих.
  • Доступны в арсенале логарифмы, факториалы и другие интересные функции
  • Данный онлайн калькулятор умеет строить графики!!!

Для построения графиков, сервис использует специальную кнопку (график серый нарисован) или буквенное представление этой функции (Plot). Чтобы построить график в онлайн калькуляторе, достаточно записать функцию: plot(tan(x)),x=-360..360.

Мы взяли самый простой график для тангенса, и после запятой указали диапазон переменной X от -360 до 360.

Построить можно абсолютно любую функцию, с любым количеством переменных, например такую: plot(cos(x)/3z, x=-180..360,z=4) или ещё более сложную, какую сможете придумать

Обращаем внимание на поведение переменной X — указан промежуток от и до с помощью двух точек

Единственный минус (хотя трудно назвать это минусом) этого онлайн калькулятора это то, что он не умеет строить сферы и другие объёмные фигуры — только плоскость.

Как работать с Математическим калькулятором

1. Дисплей (экран калькулятора) отображает введенное выражение и результат его расчёта обычными символами, как мы пишем на бумаге. Это поле предназначено просто для просмотра текущей операции. Запись отображается на дисплее по мере набора математического выражения в строке ввода.

2. Поле ввода выражения предназначено для записи выражения, которое нужно вычислить. Здесь следует отметить, что математические символы, используемые в компьютерных программах, не всегда совпадают с теми, которые обычно мы применяем на бумаге. В обзоре каждой функции калькулятора вы найдёте правильное обозначение конкретной операции и примеры расчётов в калькуляторе. На этой странице ниже приводится перечень всех возможных операций в калькуляторе, также с указанием их правильного написания.

3. Панель инструментов — это кнопки калькулятора, которые заменяют ручной ввод математических символов, обозначающих соответствующую операцию. Некоторые кнопки калькулятора (дополнительные функции, конвертер величин, решение матриц и уравнений, графики) дополняют панель задач новыми полями, где вводятся данные для конкретного расчёта. Поле «History» содержит примеры написания математических выражений, а также ваши шесть последних записей.

Обратите внимание, при нажатии кнопок вызова дополнительных функций, конвертера величин, решения матриц и уравнений, построения графиков вся панель калькулятора смещается вверх, закрывая часть дисплея. Заполните необходимые поля и нажмите клавишу «I» (на рисунке выделена красным цветом), чтобы увидеть дисплей в полный размер

4. Цифровая клавиатура содержит цифры и знаки арифметических действий. Кнопка «С» удаляет всю запись в поле ввода выражения. Чтобы удалять символы по одному, нужно использовать стрелочку справа от строки ввода.

Старайтесь всегда закрывать скобки в конце выражения. Для большинства операций это некритично, калькулятор online рассчитает всё верно. Однако, в некоторых случаях возможны ошибки. Например, при возведении в дробную степень незакрытые скобки приведут к тому, что знаменатель дроби в показателе степени уйдет в знаменатель основания. На дисплее закрывающая скобка обозначена бледно-серым цветом, её нужно закрыть, когда запись закончена.

Клавиша Символ Операция
pi pi Постоянная pi
е е Число Эйлера
% % Процент
( ) ( ) Открыть/Закрыть скобки
, , Запятая
sin sin(?) Синус угла
cos cos(?) Косинус
tan tan(y) Тангенс
sinh sinh() Гиперболический синус
cosh cosh() Гиперболический косинус
tanh tanh() Гиперболический тангенс
sin-1 asin() Обратный синус
cos-1 acos() Обратный косинус
tan-1 atan() Обратный тангенс
sinh-1 asinh() Обратный гиперболический синус
cosh-1 acosh() Обратный гиперболический косинус
tanh-1 atanh() Обратный гиперболический тангенс
x2 ^2 Возведение в квадрат
х3 ^3 Возведение в куб
xy ^ Возведение в степень
10x 10^() Возведение в степень по основанию 10
ex exp() Возведение в степень числа Эйлера
vx sqrt(x) Квадратный корень
3vx sqrt3(x) Корень 3-ей степени
yvx sqrt(x,y) Извлечение корня
log2x log2(x) Двоичный логарифм
log log(x) Десятичный логарифм
ln ln(x) Натуральный логарифм
logyx log(x,y) Логарифм
I / II   Сворачивание/Вызов дополнительных функций
Unit   Конвертер величин
Matrix   Матрицы
Solve   Уравнения и системы уравнений
  Построение графиков
Дополнительные функции (вызов клавишей II)
mod mod Деление с остатком
! ! Факториал
i / j i / j Мнимая единица
Re Re() Выделение целой действительной части
Im Im() Исключение действительной части
|x| abs() Модуль числа
Arg arg() Аргумент функции
nCr ncr() Биноминальный коэффициент
gcd gcd() НОД
lcm lcm() НОК
sum sum() Суммарное значение всех решений
fac factorize() Разложение на простые множители
diff diff() Дифференцирование
Deg   Градусы
Rad   Радианы

Инженерный калькулятор онлайн

Спешим представить всем желающим бесплатный инженерный калькулятор. С его помощью любой учащийся может быстро и, что самое главное, легко выполнять различного рода математические вычисления онлайн.

Калькулятор взят с сайта — web 2.0 scientific calculator

Инженерному калькулятору под силу выполнить как простые арифметические действия, так и довольно сложные математические расчеты.

Web20calc — инженерный калькулятор, который имеет огромное количество функций, к примеру, как вычисление всех элементарных функций. Также калькулятор поддерживает тригонометрические функции, матрицы, логарифмы и даже построение графиков.

Несомненно, Web20calc будет интересен той группе людей, которая в поиске простых решений набирает в поисковых системах запрос: математический онлайн калькулятор. Бесплатное веб-приложение поможет сиюминутно посчитать результат какого-нибудь математического выражения, к примеру, вычесть, сложить, поделить, извлечь корень, возвести в степень и т.д.

В выражении можно воспользоваться операциями возведения в степень, сложения, вычитания, умножения, деления, процентом, константой ПИ. Для сложных вычислений следует указывать скобки.

Возможности инжинерного калькулятора:

1. основные арифметические действия;
2. работа с цифрами в стандартном виде;
3. вычисление тригонометрических корней, функций, логарифмов, возведение в степень;
4. статистические расчеты: сложение, среднее арифметическое или среднеквадратическое отклонение;
5. применение ячейки памяти и пользовательских функций 2-х переменных;
6. работа с углами в радианной и градусной мерах.

Инженерный калькулятор допускает использование разнообразных математических функций:

• извлечение корней (корень квадратный, кубический, а также корень n-ой степени);
• ex (e в x степени), экспонента;
• тригонометрические функции: синус — sin, косинус — cos, тангенс — tan;
• обратные тригонометрические функции: арксинус — sin-1, арккосинус — cos-1, арктангенс — tan-1;
• гиперболические функции: синус — sinh, косинус — cosh, тангенс — tanh;
• логарифмы: двоичный логарифм по основанию два — log2x, десятичный логарифм по основанию десять — log, натуральный логарифм – ln.

В этот инженерный калькулятор также включён калькулятор величин с возможностью конвертирования физических величин для различных систем измерений – компьютерные единицы, расстояние, вес, время и т.д. С помощью данной функции можно моментально произвести перевод миль в километры, фунтов в килограммы, секунд в часы и т.д.

Чтобы произвести математические расчеты, для начала введите последовательность математические выражения в соответствующее поле, затем нажмите на знак равенства и лицезрейте результат. Можно вводить значения прямо с клавиатуры (для этого область калькулятора должна быть активна, следовательно, нелишним будет поставить курсор в поле ввода). Помимо прочего, данные можно вносить при помощи кнопок самого калькулятора.

Для построения графиков в поле ввода следует записать функцию так, как указанно в поле с примерами или воспользуйтесь специально предназначенной для этого панелью инструментов (чтобы в нее перейти нажмите на кнопку с иконкой в виде графика). Для конвертации величин нажмите Unit, для проведения работ с матрицами – Matrix.

Системы линейных уравнений

Пример 9. Метод Крамера

Дано:
Система линейных уравнений

Найти:
Решение системы линейных уравнений методом Крамера.x1, x2, x3— ?

Составляем матрицу B из свободных членов данной системы уравнений — матрицу-столбец свободных членов:

Решаем пример методом Крамера, используя .

Условие Δ ≠ 0 выполняется, значит система совместна и определена, причём единственное решение вычисляется по формулам Крамера:

Δ1 — 1-й вспомогательный определитель системы, получается из Δ заменой 1-го столбца на столбец свободных членов:

Δ2 — 2-й вспомогательный определитель системы, получается из Δ заменой 2-го столбца на столбец свободных членов:

Δ3 — 3-й вспомогательный определитель системы, получается из Δ заменой 3-го столбца на столбец свободных членов:

Подставив полученные значения в формулы Крамера, находим неизвестные члены уравнения:

Ответ: .

Пример 10. Метод Гаусса

Дано:
Система линейных уравнений

Найти:
Решение системы линейных уравнений методом Гаусса.x1, x2, x3— ?

Решение:
Составляем расширенную матрицу (A|B) системы из коэффициентов при неизвестных и правых частей:
(A|B)=

Приведём расширенную матрицу (A|B) системы к ступенчатому виду.

Из второй строки вычитаем первую строку, умноженную на четыре:
(A|B)~

Из третьей строки вычитаем первую строку, умноженную на два:
(A|B)~

Из третьей строки вычитаем вторую строку, умноженную на :
(A|B)~

Полученной диагональной матрице соответствует эквивалентная система:

Ответ: .

Примеры решения задач онлайн с помощью WolframAlpha

1. Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических уравнений.Пример1. Чтобы решить уравнениеx2+ 3x- 4 = 0, нужно ввести solve x^2+3x-4=0Пример2. Чтобы решить уравнение log32x = 2, нужно ввести solve log(3, 2x)=2Пример3. Чтобы решить уравнение 25x-1= 0.2, нужно ввести solve 25^(x-1)=0.2Пример4. Чтобы решить уравнение sin x= 0.5, нужно ввести solve sin(x)=0.5

2. Решение систем уравнений.Пример. Чтобы решить систему уравнений

          x+y= 5,          x-y= 1,

нужно ввестиsolve x+y=5  &&  x-y=1Знаки   &&  в данном случае обозначает логическое «И».

3. Решение рациональных неравенств любой степени.Пример. Чтобы решить неравенствоx2+ 3x- 4 solve x^2+3x-4

4. Решение систем рациональных неравенств.Пример.Чтобы решить систему неравенств

         x2+ 3x- 4          2×2-x+ 8 > 0,

нужно ввести solve x^2+3x-4 &&  2х^2- x + 8 > 0Знаки && в данном случае обозначает логическое «И».

5. Раскрытие скобок + приведение подобных в выражении.Пример. Чтобы раскрыть скобки в выражении (c+d)2(a-c) и привести подобные, нужно ввести expand (c+d)^2*(a-c).

6. Разложение выражения на множители.Пример. Чтобы разложить на множители выражение x2+ 3x- 4, нужно ввести factor x^2 + 3x — 4.

7. Вычисление суммыnпервых членов последовательности (в том числе арифметической и геометрической прогрессий).Пример. Чтобы вычислить сумму 20 первых членов последовательности, заданной формулой an = n3+n, нужно ввестиsum n^3+n, n=1..20Если нужно вычислить сумму первых 10 членов арифметической прогрессии, у которой первый членa1 = 3, разность d = 5, то можно, как вариант, ввести a1=3, d=5, sum a1 + d(n-1), n=1..10Если нужно вычислить сумму первых 7 членов геометрической прогрессии, у которой первый членb1 = 3, разность q = 5, то можно, как вариант, ввести b1=3, q=5, sum b1*q^(n-1), n=1..7

8. Нахождение производной.Пример. Чтобы найти производную функции f(x) =x2+ 3x- 4, нужно ввести derivative x^2 + 3x — 4

9. Нахождение неопределенного интеграла.Пример. Чтобы найти первообразную функцииf(x) =x2+ 3x- 4, нужно ввести integrate x^2 + 3x — 4

10. Вычислениеопределенного интеграла.Пример. Чтобы вычислить интеграл функцииf(x) =x2+ 3x- 4 на отрезке , нужно ввести integrate x^2 + 3x — 4, x=5..7

11. Вычислениепределов.Пример. Чтобы убедиться, что

введите lim (x -> 0) (sin x)/x и посмотрите ответ. Если нужно вычислить какой-то предел при x, стремящемся к бесконечности, следует вводитьx -> inf.

12. Исследование функции и построение графика.Пример. Чтобы исследовать функцию x3- 3×2и построить ее график, просто введите x^3-3x^2. Вы получите корни (точки пересечения с осью ОХ), производную, график, неопределенный интеграл, экстремумы.

13. Нахождение наибольшего и наименьшего значений функции на отрезке.Пример. Чтобы найти минимальное значение функции x3- 3×2на отрезке , нужно ввести minimize (x^3-x^2), {x, 0.5, 2}Чтобы найти максимальное значение функцииx3- 3×2на отрезке , нужно ввести maximize (x^3-x^2), {x, 0.5, 2}

Дополнительные разъяснения по работе с решателем здесь

Аналитическая геометрия

Пример 16. Уравнение плоскости, проходящей через точку перпендикулярно вектору

Написать уравнение плоскости, проходящей через точку M перпендикулярно вектору .Дано:
Координаты точек: M(2, 5, -3), M1(7, 8, -1) и M2(9, 7, 4).Найти:
Уравнение плоскости, проходящей через точку M перпендикулярно вектору .

Решение:
В качестве нормального вектора плоскости выбираем вектор = {x2-x1, y2-y1, z2-z1} = {9-7, 7-8, 4-(-1)} = {2, -1, 5}.

Уравнение плоскости, проходящей через точку M(x, y, z) перпендикулярно вектору = {A, B, C}, имеет вид .

Составляем уравнение плоскости с нормальным вектором = {2, -1, 5}, проходящей через точку M(2, 5, -3):.

Ответ: .

Пример 17. Уравнение плоскости «в отрезках»

Какие отрезки отсекает на осях координат плоскость?Дано:
Уравнение плоскости: 2x – 4y + 6z – 12 = 0.Найти:
Отрезки, которые отсекает на осях координат плоскость.a, b, c — ?

Решение:
Приведем общее уравнение плоскости к виду уравнения «в отрезках»:

Уравнение — это уравнение плоскости «в отрезках». Параметры представляют собой координаты точек пересечения плоскости с координатными осями и равны (с точностью до знака) отрезкам, отсекаемым плоскостью на координатных осях.

Применяя вышеприведенное к уравнению 2x – 4y + 6z –12 = 0, получим:.

Отрезки, отсекаемые на осях, равны a = 6, b =−3, c = 2.
Отрицательный знак перед b показывает, что плоскость пересекает отрицательную полуось Oy.

Задачи по теме «Уравнение плоскости в пространстве»

Задача 1. Составить канонические уравнения прямой:

Решение:
Для составления канонического или параметрического уравнения прямой в пространстве, нужно знать координаты какой-либо точки, лежащей на этой на этой прямой, и координаты вектора, коллинеарного прямой.
Так как прямая является линией пересечения двух плоскостей, ее направляющий вектор а параллелен каждой из этих плоскостей и соответственно перпендикулярен нормалям n1 и n2 к данным плоскостям. В таком случае он коллинеарен векторному произведению [n1, n2].n1 = (2; 1; -5), n2 = (5; 3; 8), [n1, n2] = (23; -41; 1).
Итак, (l; m; n) = (23; -41; 1).

Найдем точку, лежащую на данной прямой, у которой одна из координат принимает выбранное нами значение; тогда остальные две координаты можно определить из системы уравнений, задающей пересекающиеся плоскости.

Примем для удобства вычислений z = 0, тогда для точки A={х; у; 0}x = -4; y = 11; A = {4; 11; 0}.

Cоставим канонические уравнения данной прямой:.

Ответ: .

Задача 2. Составить уравнение плоскости, проходящей через прямую k: и точку B = {2; -3; 1}.

Решение:
Так как точка А = {-3,5,-1} принадлежит плоскости, значит вектор AB параллелен плоскости.
Так как данная прямая лежит в плоскости, ее направляющий вектор a = (2; 1; -1) параллелен плоскости.
Значит, нормаль к плоскости коллинеарна векторному произведению этих векторов.

Так как прямая лежит в плоскости, ее направляющий вектор a = (2; 1; -1) параллелен плоскости. При d = 0 из уравнений прямой получаем: — координаты точки А, принадлежащей прямой и соответственно плоскости.

Получается, что вектор AB = (5; -8; 2) параллелен плоскости. Значит, нормаль n к плоскости коллинеарна векторному произведению = (-6; -9; -21).
Примем n = (2; 3; 7) и составим уравнение плоскости, проходящей через точку B перпендикулярно n:

Ответ: 2x + 3y + 7z – 2 = 0.

Задача 3.Написать уравнение плоскости, которая проходит через три точки с координатами N1(x1, y1, z1), N2(x2, y2, z2), N3(x3, y3, z3).

Решение:
Предположим, что какая нибудь, находящаяся на плоскости точка N, имеет координаты (x, y, z). Для этого случая уравнение плоскости примет вид:
(r-r, a, b) = 0,
гдеr = (x, y, z);r = (x1, y1, z1);
базисные векторы (смотрите рисунок) соответственно равны и .

Если записать смешанное произведение в виде определителя, то получим необходимое уравнение плоскости:

Ответ:

Что решебник может решить

Данная программа предоставляет самую различную информацию по введенным данным. Решебник по математике англоязычный, но для решения примеров английский язык не помеха. Ниже я опишу как им пользоваться. Если хотите узнать, что он еще может — введите какое-нибудь англоязычное слово, например SUN. Уверен, он Вам понравится. Для подробного описания тех или иных правил, переходите на вкладку «Математика», там находится теоретическая часть. Для решения задач и примеров, на которые программа не знает ответа, перейдите по соответствующим ссылкам в меню. Поле решебника будет всегда в меню сверху. Удачи!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector