Рейтинг твердотельных SSD накопителей объемом 120 и 240 Гб с 2017 по 2019 год

Тестовый стенд

С выходом процессоров Coffee Lake и наборов логики трёхсотой серии мы решили обновить тестовую систему, которая используется для измерения производительности NVMe-моделей SSD. Всё-таки такие накопители в первую очередь покупают энтузиасты, переходящие на новые платформы, и поэтому логично было бы именно такую платформу использовать в тестовых испытаниях.

В итоге в качестве тестовой платформы используется компьютер с материнской платой ASUS Maximus X Hero, процессором Core i5-8600K со встроенным графическим ядром Intel UHD Graphics 630 и 8 Гбайт DDR4-2666 SDRAM. Приводы с SATA-интерфейсом подключаются к контроллеру SATA 6 Гбит/с, встроенному в чипсет материнской платы, и работают в режиме AHCI. Используется драйвер Intel Rapid Storage Technology (RST) 15.9.0.1015. Накопители с интерфейсом M.2 устанавливаются в соответствующий слот материнской платы, запитанный от чипсета. Накопители в виде карт PCI Express устанавливаются в слот PCI Express 3.0 x4, также работающий через чипсет.

Объём и скорость передачи данных в бенчмарках указываются в бинарных единицах (1 Кбайт = 1024 байт).

Отдельное пояснение следует сделать относительно закрытия процессорных уязвимостей Meltdown (CVE-2017-5754) и Spectre (CVE-2017-5715)

Дело в том, что разработанные патчи заметно снижают производительность твердотельных накопителей, но, учитывая важность тестирования SSD в реальных условиях, измерения мы проводили с установленными обновлениями микропрограммы процессора и операционной системы и с активированными «заплатками»

Список участников тестирования

Intel SSD 760p претендует на то, чтобы стать лучшим по соотношению цены и производительности предложением в сегменте потребительских NVMe SSD. Поэтому в первую очередь его целесообразно сравнивать с Samsung 960 EVO, который сейчас выступает эдаким универсальным ответом на запросы энтузиастов. Но кроме продукта южнокорейской компании, в тесты были включены и основные популярные альтернативы, которые могут предложить прочие производители. В их числе стандартные SSD на базе платформ Phison E7 (GOODRAM IRDM Ultimate) и SMI SM2260 (Transcend MTE850), а также уникальные решения Plextor и Toshiba.

Помимо этого, в тестах принял участие и заведомый аутсайдер, Intel SSD 600p, который нужен для наглядной иллюстрации того гигантского шага, который совершила Intel, выпустив на рынок SSD 760p.

В результате список протестированных моделей получился следующим:

  • GOODRAM IRDM Ultimate 480 Гбайт (SSDPR-IRIDULT-480, прошивка E7FM04.5);
  • Intel SSD 600p 512 Гбайт (SSDPEKKW512G7, прошивка PSF121C);
  • Intel SSD 760p 512 Гбайт (SSDPEKKW512G8, прошивка 001C);
  • Plextor M9Pe 512 Гбайт (PX-512M9PeG, прошивка 1.02);
  • Samsung 960 EVO 500 Гбайт (MZ-V6E500, прошивка 3B7QCXE7);
  • Samsung 960 PRO 512 Гбайт (MZ-V6P512, прошивка 4B6QCXP7);
  • Toshiba OCZ RD400 512 Гбайт (RVD400-M22280-512G-A, прошивка 57CZ4102);
  • Transcend MTE850 512 Гбайт (TS512GMTE850, прошивка C2.3.13).

Используемые версии NVMe-драйверов:

  • Intel Client NVMe Driver 4.0.0.1007;
  • Microsoft Windows NVMe Driver 10.0.16299.15;
  • OCZ NVMe Driver 1.2.126.843;
  • Samsung NVM Express Driver 2.3.0.1709.

PCMark 7

  • Первое место PCMark 7 отдал накопителю Apacer. Хотя с практической точки зрения результаты всех участников примерно одинаковые.
  • Только Agility 4 существенно отличается от конкурентов, и не в лучшую сторону. Небольшое отставание Vertex 4 от группы лидеров также бросается в глаза.
  • Plextor M3 снова исключен из соревнования, поскольку мы еще не тестировали SSD при помощи PCMark 7 на момент его обзора.

Наибольший разброс результатов, как всегда, наблюдается в тесте Starting Applications, где Agility 4 отличился катастрофическим результатом, да и Vertex 4 заметно отстает от группы лидеров.

Методика тестирования

Тестирование проводится в операционной системе Microsoft Windows 8.1 Professional x64 with Update, корректно распознающей и обслуживающей современные твердотельные накопители. Это значит, что в процессе прохождения тестов, как и при обычном повседневном использовании SSD, команда TRIM поддерживается и активно задействуется. Измерение производительности выполняется с накопителями, находящимися в «использованном» состоянии, которое достигается их предварительным заполнением данными. Перед каждым тестом накопители очищаются и обслуживаются с помощью команды TRIM. Между отдельными тестами выдерживается 15-минутная пауза, отведённая для корректной отработки технологии сборки мусора. Во всех тестах, если не указано иное, используются рандомизированные несжимаемые данные.

Используемые приложения и тесты:

Iometer 1.1.0

  1. Измерение скорости последовательного чтения и записи данных блоками по 256 Кбайт (наиболее типичный размер блока при последовательных операциях в десктопных задачах). Оценка скоростей выполняется в течение минуты, после чего вычисляется средний показатель.
  2. Измерение скорости случайного чтения и записи блоками размером 4 Кбайт (такой размер блока используется в подавляющем большинстве реальных операций). Тест проводится дважды — без очереди запросов и с очередью запросов глубиной 4 команды (типичной для десктопных приложений, активно работающих с разветвлённой файловой системой). Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
  3. Установление зависимости скоростей случайного чтения и записи при работе накопителя с 4-килобайтными блоками от глубины очереди запросов (в пределах от одной до 32 команд). Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
  4. Установление зависимости скоростей случайного чтения и записи при работе накопителя с блоками разного размера. Используются блоки объёмом от 512 байт до 256 Кбайт. Глубина очереди запросов в течение теста составляет 4 команды. Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
  5. Измерение производительности при смешанной многопоточной нагрузке и установление её зависимости от соотношения между операциями чтения и записи. Используются последовательные операции чтения и записи блоков объёмом 128 Кбайт, выполняемые в два независимых потока. Соотношение между операциями чтения и записи варьируется с шагом 10 процентов. Оценка скоростей выполняется в течение трёх минут, после чего вычисляется средний показатель.
  6. Исследование падения производительности SSD при обработке непрерывного потока операций случайной записи. Используются блоки размером 4 Кбайт и глубина очереди 32 команды. Блоки данных выравниваются относительно страниц флеш-памяти накопителей. Продолжительность теста составляет два часа, измерения моментальной скорости проводятся ежесекундно. По окончании теста дополнительно проверяется способность накопителя восстанавливать свою производительность до первоначальных величин за счёт работы технологии сборки мусора и после отработки команды TRIM.

CrystalDiskMark 3.0.3bСинтетический тест, выдающий типовые показатели производительности твердотельных накопителей, измеренные на 1-гигабайтной области диска «поверх» файловой системы

Из всего набора параметров, которые можно оценить с помощью этой утилиты, мы обращаем внимание на скорость последовательного чтения и записи, а также на производительность произвольных чтения и записи 4-килобайтными блоками без очереди запросов и с очередью глубиной 32 команды.

PCMark 8 2.0Тест, основанный на эмулировании реальной дисковой нагрузки, которая характерна для различных популярных приложений. На тестируемом накопителе создаётся единственный раздел в файловой системе NTFS на весь доступный объём, и в PCMark 8 проводится тест Secondary Storage

В качестве результатов теста учитывается как итоговая производительность, так и скорость выполнения отдельных тестовых трасс, сформированных различными приложениями.

Диски на 240 Gb

Эти диски, благодаря большей емкости, также подходят для самых «тяжелых» программ и обработки файлов большого объема – например, длительных видеороликов. Увеличение объема накопителя напрямую влияет и на увеличение его стоимости в магазине.

Наименование SSD c объемом 240 GB Баллы
Kingston HyperX Savage 2.5″ MLC+3.5″ адаптер 21,3
Patriot Blast 2.5″ TLC 20,3
AMD Radeon R5 2.5″ 3D TLC 20
Silicon Power Slim S70 2.5″ MLC 18,6
Silicon Power Slim S80 2.5″ MLC 18,5
Samsung PM863a (OEM) 2.5″ V‐NAND TLC 18,5
Silicon Power Velox V60 2.5″ MLC+3.5″ адаптер 18,5
Intel DC S4600 Series 2.5″ 3D TLC 17,2
Silicon Power Slim S55 2.5″ TLC 17
Silicon Power Velox V55 2.5″ TLC 17
SmartBuy Jolt 2.5″ 3D TLC 16,9
Kingston UV500 2.5″ 3D TLC 16,8
Intel DC S4500 Series 2.5″ 3D TLC 16,6
ADATA Ultimate SU650 2.5″ 3D TLC 15,2
Kingston UV400 2.5″ TLC 14,2
Kingston A400 2.5″ TLC 14
Transcend SSD220S 2.5″ TLC 13,6
Patriot Burst 2.5″ 3D TLC 13
Goodram CL100 2.5″ TLC 12,1
SmartBuy Revival 2 2.5″ 3D TLC 11,8
SanDisk PLUS 2.5″ TLC 11,7
Goodram CX300 2.5″ TLC 11,3
SmartBuy Splash 2 2.5″ 3D TLC 10,9
Intel DC S3520 Series 2.5″ 3D MLC 10,9
WD Green 2.5″ TLC 9,6

Как и флешки этого бренда, Kingston HyperX Savage 2.5″ MLC весьма неплох в качестве накопителя. К сожалению, здесь, по сравнению с продуктами конкурентов, меньше время работы на отказ – всего один миллион часов.

Однако по основным характеристикам он оставляет позади аналогичные устройства – низкое энергопотребление, даже в режиме записи данных, отсутствие вибраций, стойкость к ударным нагрузкам, высокая скорость чтения информации – факторы , которые делают этот твердотельный накопитель неплохим вариантом для апгрейда компьютера или ноутбука.

Kingston UV500 2.5″ 3D TLC можно назвать идеальным решением для выполнения повседневных задач. Устройство создано, чтобы обеспечить наилучшую производительность и быстрое открытие объемных мультимедийных файлов.

Компактные размеры позволяют использовать девайс в том числе и в ноутбуках, а благодаря низкому энергопотреблению, батарея долго не разрядится.

При апгрейде рекомендую обратить внимание на эти устройства:

  • 120 Гб – Samsung 850 (RTL) 2.5″ V‐NAND TLC;
  • 240 Гб – Kingston HyperX Savage 2.5″ MLC.

Выше я уже объяснил, почему именно так.

Производительность при смешанной нагрузке

Тесты при нагрузке в виде смешанных сценариев хороши для проверки, как SSD будет вести себя в реальной жизни. И здесь бросается в глаза выдающийся результат Samsung 970 EVO ёмкостью 1 Тбайт. Понятно, что обеспечивается он в первую очередь технологией ускоренной записи Intelligent TurboWrite, и это подводит нас к выводу о том, что вся магия 970 EVO проявляется при работе этого накопителя с SLC-кешем. Что совершенно логично: как было сказано выше, контроллер Phoenix – очень мощное решение, и то, как показывают себя конечные изделия на его основе, всецело зависит от быстродействия используемой флеш-памяти.

Если же говорить о производительности младших моделей в ряду 970 EVO, то они неплохо выглядят лишь при линейных смешанных операциях. Если же нагрузка имеет полностью случайный характер, относительные показатели 970 EVO падают, причём в случае 250-гигабайтного накопителя очень сильно. В итоге, хотя самсунговская новинка и оказывается немного быстрее 960 EVO, альтернативе в лице Intel SSD 760p она всё-таки уступает.

Деградация и восстановление производительности

Наблюдение за изменением скорости записи в зависимости от объёма записанной на диск информации — весьма важный эксперимент, позволяющий понять работу внутренних алгоритмов накопителя. В данном тесте мы загружаем SSD непрерывным потоком запросов на случайную запись 4-килобайтных блоков с очередью максимальной глубины и попутно следим за той производительностью, которая при этом наблюдается. На приведённом ниже графике в виде точек отмечены результаты измерений моментальной производительности, которые мы снимаем ежесекундно, а чёрная линия показывает среднюю скорость, наблюдаемую в течение 30-секундного интервала.

Тестируя новые TLC-накопители на базе бюджетных платформ Silicon Motion и Phison, мы, честно говоря, даже немного подзабыли, как должна выглядеть производительность качественных потребительских SSD при непрерывных и длительных нагрузках. Но Samsung 750 EVO 250 Гбайт оживил стёршуюся из памяти картину – его поведение оказалось близким к эталону. С высокой скоростью — порядка 60 тысяч IOPS — можно заполнить полный объём этого SSD, причём в процессе такого заполнения он демонстрирует отменное постоянство производительности. Первые же несколько гигабайт данных пишутся с увеличенным быстродействием – это результат работы технологии TurboWrite.

После записи примерно 240 Гбайт данных пул свободных страниц заканчивается и накопитель переходит в «использованное» состояние, в котором перед каждой операцией записи контроллер должен освобождать блоки страниц флеш-памяти. Это снижает производительность до 10-20 тысяч IOPS, но стабильность при этом остается весьма впечатляющей. Всё это значит, что Samsung 750 EVO можно смело ставить в RAID-массивы или использовать его там, где важна реакция дисковой подсистемы с предсказуемой латентностью.

Впрочем, то, что изображено на графике выше, – несколько искусственная ситуация. В реальных персональных компьютерах таких длительных нагрузок не бывает. А вот с чем пользователи наверняка будут сталкиваться – так это с работой TurboWrite. Поэтому давайте увеличим начальную область предыдущего графика и подробнее взглянем на то, что происходит с производительностью при заполнении SLC-кеша. Для пущей наглядности в одну систему координат с Samsung 750 EVO 250 Гбайт помещены и показатели Samsung 850 EVO 250 Гбайт.

Сама по себе технология TurboWrite в Samsung 750 EVO точно такая же, как и в Samsung 850 EVO. Размер SLC-буфера в обоих случаях идентичный и составляет порядка 3 Гбайт для 250-гигабайтной версии накопителя. Более того, в обоих случаях он работает с совершенно одинаковой скоростью. Различия же между 750 EVO и 850 EVO заметны лишь при записи больших объёмов информации, не помещающихся в SLC-кеш. Массив памяти, построенный из устройств TLC V-NAND, быстрее, чем массив из обычной планарной TLC NAND, и именно это обуславливает разницу в производительности Samsung 750 EVO и Samsung 850 EVO. Очевидно, что в сценариях работы, в которых записи больших объёмов данных не происходят, эти накопители будут выдавать примерно одинаковое быстродействие.

Давайте посмотрим теперь, как у Samsung 750 EVO работает сборка мусора. Для исследования этого вопроса после завершения предыдущего теста, приводящего к деградации скорости записи, мы выжидаем 15 минут, в течение которых SSD может попытаться самостоятельно восстановиться за счёт сборки мусора, но без помощи со стороны операционной системы и команды TRIM, и замеряем быстродействие. Затем на накопитель принудительно подаётся команда TRIM — и скорость измеряется ещё раз, что позволяет убедиться в способности SSD с помощью TRIM полностью восстанавливать свою паспортную производительность.

TRIM в Samsung 750 EVO работает, как и должен, – производительность возвращается к первоначальным показателям, гарантируя, что при обычной эксплуатации SSD в операционной системе с поддержкой TRIM никаких проявлений деградации скорости записи происходить не будет. Что же касается сборки мусора в условиях без TRIM, то она фактически не работает. Но положение спасает технология TurboWrite. SLC-кеш освобождается контроллером при первой же возможности без каких бы то ни было команд извне, и именно благодаря данному свойству Samsung 750 EVO может хорошо вписаться и в «бестримовую» среду. А это значит, что этот недорогой накопитель вполне можно использовать в RAID-массивах даже с контроллерами, которые команду TRIM от операционной системы не ретранслируют.

Производительность последовательного чтения и записи

При линейном чтении с очередью запросов сравнительно небольшой глубины Intel SSD 760p выдаёт сравнительно неплохой результат. Фактически он отстаёт лишь от накопителей Samsung, причём отставание от прямого соперника – 960 EVO – сравнительно невелико. Это значит, что прошлый потребительский накопитель Intel, SSD 600p, можно забыть как страшный сон. Новинка, которая приходит ему на смену, в буквальном смысле лучше в разы.

Впрочем, если посмотреть на скорость линейной записи, то тут Intel SSD 760p заметно отстаёт не только от накопителей с MLC-памятью. Опережают его и некоторые модели, построенные на TLC 3D NAND. Причина достаточно очевидна: SLC-кеш у Intel SSD 760p имеет сравнительно небольшой размер, и его может не хватать при продолжительных нагрузках.

Реальные сценарии нагрузки

Мы обновили набор используемых нами реальных сценариев, и теперь помимо скорости работы SSD при копировании и архивации файлов мы будем проверять также и скорость запуска с твердотельного накопителя игр и приложений. Новые тесты позволят нам делать выводы о том, насколько хорошо та или иная модель может справиться с ролью системного или даже единственного диска в составе ПК, на котором устанавливаются рабочие программы.

При копировании больших объёмов информации Samsung 750 EVO оказывается лучше всех прочих TLC-накопителей, но до уровня, задаваемого MLC SSD, он не дотягивает. Это вполне закономерно: массив трёхбитовой памяти, даже управляемый мощным контроллером, – не самая производительная начинка, особенно если записываемая информация не умещается в SLC-кеш.

При архивации картина оказывается немного иной. Принципиальное отличие тут в том, что TLC-накопитель SanDisk Ultra II смог немного опередить Samsung 750 EVO. Однако все прочие TLC SSD на базе платформ Silicon Motion и Phison до уровня, задаваемого 750 EVO, всё равно не дотягивают.

Отдельный тест разархивации мы проводим по причине особого профиля нагрузки на дисковую подсистему, который очень похож по своему характеру на инсталляцию программного обеспечения. Но результат тут вполне типичен — Samsung 750 EVO располагается между распространёнными MLC- и TLC-накопителями.

Зато при нагрузке, главным образом состоящей из операций чтения данных, Samsung 750 EVO выдаёт просто блестящую скорость. При использовании этого накопителя в роли системного диска вполне можно рассчитывать на производительность на уровне флагманов, чего о других SSD на TLC-памяти сказать невозможно. И в этом, пожалуй, заключается одна из самых сильных сторон рассматриваемой модели.

Тестирование выносливости

Результаты тестирования выносливости рассматриваемого накопителя приведены в отдельном специальном материале «Ресурсные испытания SSD».

Выводы

Мы уже привыкли к тому, что появление любого нового накопителя компании Samsung – это событие. Обладая мощным инженерным потенциалом и огромными производственными мощностями, эта фирма выпускает не имеющие аналогов SSD, которые раз за разом становятся одними из самых лучших и самых востребованных предложений на рынке. Но 750 EVO несколько выбивается из общей концепции, ведь по сути в этом накопителе нет ничего нового. В нём старый контроллер MGX, взятый из 850 EVO, совмещён с 16-нм планарной TLC NAND, которую тоже новой или передовой никак не назовёшь.

Но тем не менее при этом Samsung снова выступила в своём традиционном амплуа: она сделала то, что никто другой из производителей SSD до сих пор сделать не сумел. А именно, спроектировала такой SATA-накопитель, который смог объединить производительность MLC-моделей с ценой TLC-продуктов. И благодаря этому Samsung 750 EVO вполне способен отправить расплодившиеся в последнее время TLC-накопители прочих производителей (и в особенности основанные на контроллерах Phison S10 и SMI SM2256) в глубокий нокаут.

Впрочем, этой своей способностью новинка пользуется далеко не в полной мере. Очевидно, что Samsung сильно опасается, как бы 750 EVO не поломал продажи старших моделей, поэтому максимальная ёмкость в линейке 750 EVO ограничена величиной 250 Гбайт. И это оставляет достаточно большое пространство, в котором конкурирующие TLC SSD пока ещё могут чувствовать себя в относительной безопасности.

Естественно, возвращение на рынок накопителя Samsung на базе планарной TLC-памяти подстегнёт новый всплеск разговоров про сомнительную надёжность таких решений, ведь неприятная история, в которую попал 840 EVO, ещё не стёрлась из памяти. Однако насчёт надёжности 750 EVO можно не опасаться. Во-первых, его гарантированный производителем ресурс лучше, чем у многих других накопителей на трёхбитовой памяти. А во-вторых, Samsung перешла на качественно более сильный алгоритм коррекции ошибок LDPC, который повышает стабильность взаимодействия контроллера с TLC NAND. Иными словами, в данный момент переживать уместнее за TLC-накопители на базе контроллера Phison S10 – в них, например, до сих пор используется коррекция ошибок на основе BCC ECC.

В итоге если вы подыскиваете себе быстрый и недорогой (ключевое слово здесь – недорогой) SSD небольшого объёма под операционную систему и программы, то варианта лучше Samsung 750 EVO не найти. И особенно привлекательным это предложение южнокорейского гиганта выглядит на фоне того, что рекомендованные цены для российского региона установлены в 3 890 и 5 690 рублей за версии объёмом 120 и 250 Гбайт соответственно.

Выводы

То, что Intel делает в последнее время в сегменте потребительских твердотельных накопителей, вызывает как минимум уважение. После того как у компании заработало производство 64-слойной 3D NAND и появилась инновационная технология 3D XPoint, она раз за разом представляет очень интересные и привлекательные для пользователей SSD, явно намереваясь повоевать с Western Digital за второе место на рынке. И рассмотренная в этом обзоре новинка, SSD 760p, вслед за 545s, 800P и 900P, продолжает ряд удачных накопителей Intel, которые могут стать прекрасным оружием для конкурентной борьбы.

Для нового NVMe-накопителя на базе традиционной флеш-памяти разработчикам Intel удалось собрать лучшие доступные им сегодня составляющие: 64-слойную TLC 3D NAND второго поколения с 256-гигабитными ядрами и доработанный контроллер Silicon Motion SM2262, который получен глубокой оптимизацией из чипа SM2260. В результате на выходе получилось очень достойное решение, которое не только превзошло актуальные предложения производителей второго-третьего эшелона, но и внезапно оказалось способно потягаться с таким «твердотельным авторитетом», как Samsung 960 EVO.

И даже больше того, детальное знакомство показало, что Intel SSD 760p по многим параметрам определённо лучше самого популярного самсунговского NVMe SSD. В частности, интеловская новинка превосходит Samsung 960 EVO по быстродействию при произвольных операциях и при смешанной нагрузке, чего вполне хватает, чтобы со многими реальными задачами она справлялась быстрее, чем 960 EVO. Кроме того, Intel даёт на свой накопитель пятилетнюю, а не трёхлетнюю гарантию с более высоким объёмом разрешённой записи. И сопровождается это всё более низкой, чем у Samsung 960 EVO, рекомендованной ценой. Суммарно такой набор аргументов выглядит весьма убедительно, а единственная серьёзная претензия, которую можно выдвинуть в адрес Intel SSD 760p, – небольшой по современным меркам размер SLC-буфера, что может негативно проявиться при продолжительных операциях записи данных.

В конечном счёте Intel SSD 760p вполне может претендовать на то, чтобы сместить Samsung 960 EVO с позиции наиболее привлекательного потребительского NVMe SSD современности. Разумеется, безапелляционно утверждать, что интеловская новинка однозначно интереснее, нельзя, ведь SSD 760p и 960 EVO – относительно близкие по потребительским свойствам накопители. Но нам всё же представляется, что на сегодняшний день вариант компании Intel более выгоден по соотношению цены и потребительских качеств. Поэтому по итогам тестирования Intel SSD 760p получает нашу награду «3DNews рекомендует!».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector